-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathresults.tex
2650 lines (2491 loc) · 164 KB
/
results.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
%results
\acresetall
\part{Results}
\label{sec:results}
\chapter[Golden Dual Fullerenes]{Golden Dual Fullerenes\footnote{This chapter is
composed of sections previously published in the article
\citetitle*{Trombach_HollowGoldCages_2016}\autocite{Trombach_HollowGoldCages_2016}
and is reprinted by permission from the publisher \textcopyright 2016
John Wiley and Sons. Some sections have been modified to fit
the style of this thesis.}}
\label{sec:goldendualfullerenes}
\section{Introduction}
\label{sec:introGold}
With the discovery of the catalytic activity of gold
nano-clusters\autocite{Haruta1987,Haruta2003,Haruta2007,Haruta2007a}, research
interest in this field has resurged over the recent
years\autocite{Schwerdtfeger_Goldgoesnano_2003,Hakkinen2008,Maity2012,Zhang2012a,Gong2012,Miao2012,Kyoungweon-2013}.
Gold compounds can show rather interesting topologies, like barrel shaped
structures\autocite{Chen-2015} and planar
sheets,\autocite{Bravo-Perez-1999,Hakkinen2000,Landman2002} mainly because of
strong relativistic effects compared to its lighter congeners copper and
silver\autocite{Pyykko-1988,Schwerdtfeger-2002HA,Pyykko-2004,Pyykko-2007a,Huang-2008,Schwerdtfeger-Lein-2009,pyykko-2012relativistic}.
These effects are also responsible for an unusually high electronegativity,
allowing gold to act as an electron acceptor in mixed-metal
complexes.\autocite{Schwerdtfeger-2002HA} This property could be used for
electronic fine-tuning of physical and chemical properties in gold containing
nano-materials of a certain size.\autocite{Schwerdtfeger_Goldgoesnano_2003} The
growth behaviour of such clusters is, however, still debated
heavily\autocite{Zhao-2010,Barnard-2010,Tian-2011} and even the exact nature of
the transition from planar structures to three-dimensional compact geometries in
small gold clusters is not entirely
resolved.\autocite{Johansson_2D3Dtransitiongold_2008,Fa-Luong-2008,Assadollahzadeh_systematicsearchminimum_2009,Wang-Pal-2010,Wang-Wang-2011,Wang-Wang-2011,Barnard-2012,Gotz_performancedensityfunctional_2013,Kinaci_UnravelingPlanarGlobularTransition_2016}
In 2004 the first hollow gold cluster \ce{Au32} was proposed by
\citeauthor{Johansson_Au3224CaratGolden_2004}\autocite{Johansson_Au3224CaratGolden_2004}
adopting an $I_\text{h}$ symmetric structure that can be created via a dual
transformation of $I_\text{h}$-\ce{C60}, effectively replacing every face in the
carbon fullerene with a gold atom, resulting in a triangulated surface.
\citeauthor{Karttunen_IcosahedralAu72_2008}\autocite{Karttunen_IcosahedralAu72_2008}
have predicted another cage-like gold cluster $I$-\ce{Au72}, which they expect
to be spherically aromatic. For clusters of copper or silver such hollow
structures are not very
stable.\autocite{Johansson_Au3224CaratGolden_2004,FERNANDEZ_DENSITYFUNCTIONALSTUDIES_2006}
The discovery of these types of structures has sparked interest in this field
and many more hollow
cages\autocite{Gu-2004,Fernandez-2006,Fa-Dong-2006,Fa-Zhou-2006,Karttunen_IcosahedralAu72_2008,Fa-Luong-2008,Chen_Structuresneutralanionic_2010,Tian-2011,De-2012,Ning-2014,Joshi-2015}
and clusters enclosing a central metal
atom\autocite{Autschbach_PropertiesWAu12_2004,Zhai-2004,Gao-Bulusu-2005,Wang_Dopinggoldencage_2007,Wang_DopingGoldenBuckyballs_2007,Fa_StructuresMAu16Ag_2008,Munoz-2013,Manna-2013,Tang-2013}
have been found. Most importantly, $I_\text{h}$-\ce{Au32^-},
$T_\text{d}$-\ce{Au16^-}, $C_\text{2v}$-\ce{Au17^-} and
$C_\text{2v}$-\ce{Au18^-} were found to sufficiently explain gas phase
photoelectron spectra of small gold
clusters.\autocite{Ji-2005,Bulusu_Evidencehollowgolden_2006}
On the following pages the relationship between carbon and gold fullerene cages
in terms of their topology is investigated. The similarities arise from the
fact, that topological features known for carbon
fullerenes\autocite{Cataldo-Ori-2011,Schwerdtfeger_topologyfullerenes_2015,Fowler-atlas-2006},
like the Goldberg-Coxeter
transformation,\autocite{Goldberg_ClassMultiSymmetricPolyhedra_1937,Coxeter-1971}
can also be applied to golden dual fullerenes to construct larger structures. A
new class of gold clusters emerges naturally from a one-to-one mapping of the
isomer space of fullerenes to hollow gold clusters. In the following sections,
the stability of such clusters as well as their photoelectron
spectra are investigated.
%Ever since Haruta discovered that gold nano-clusters are catalytically
%active,\autocite{Haruta1987,Haruta2003,Haruta2007,Haruta2007a} we have
%experienced a new ``gold rush'' in nano
%science\autocite{Schwerdtfeger_Goldgoesnano_2003,Hakkinen2008,Maity2012,Zhang2012a,%Gong2012,Miao2012,Kyoungweon-2013}
%with the discovery of many interesting and often unexpected gold
%nano-structures.\autocite{Chen-2015} Gold shows indeed very unusual properties
%compared to its lighter congeners copper and silver due to pronounced
%relativistic effects within the Group 11 series of
%elements.\autocite{Pyykko-1988,Schwerdtfeger-2002HA,Pyykko-2004,Pyykko-2007a,%Huang-2008,Schwerdtfeger-Lein-2009,pyykko-2012relativistic}
%Albeit these effects increase with the expected $\sim Z^2$ scaling down a group
%in the periodic table, the late transition metals such as gold or mercury have
%rather large relativistic enhancement factors originating from the filling of
%the underlying valence
%$d$-shell.\autocite{Autschbach-2002,Schwerdtfeger-Lein-2009} As a result of
%relativistic effects, smaller gold clusters prefer a planar
%arrangement,\autocite{Bravo-Perez-1999,Hakkinen2000,Landman2002} and mixed
%metal-gold clusters experience strong electron donation toward the gold atoms
%due to its relativistically increased
%electronegativity.\autocite{Schwerdtfeger-2002HA} This makes mixed gold-cluster
%systems ideal for electronically fine-tuning chemical and physical
%properties.\autocite{Schwerdtfeger_Goldgoesnano_2003} Here we mention that the
%transition of 2D gold triangulated networks to 3D compact gold structures
%towards the growth into the fcc bulk gold arrangement is the subject of much
%discussion and
%debate.\autocite{Johansson_2D3Dtransitiongold_2008,Fa-Luong-2008,%Assadollahzadeh_systematicsearchminimum_2009,Wang-Pal-2010,Wang-Wang-2011,%Wang-Wang-2011,Barnard-2012,Gotz_performancedensityfunctional_2013}
%In other words, it is currently challenging to understand the growth of
%metallic clusters toward the bulk by using quantum chemical
%methods.\autocite{Zhao-2010,Barnard-2010,Tian-2011}
%
%Gold clusters can show very unusual and unexpected structures such as the
%pyramidal Au$_{20}$
%cluster\autocite{Li-2003,Fielicke-2008,Assadollahzadeh_systematicsearchminimum_2009}
%or the ``golden fullerene'' $I_\mathrm{h}-$Au$_{32}$ postulated in 2004 by Johansson %et
%al.\autocite{Johansson_Au3224CaratGolden_2004} This unique $I_\mathrm{h}-$Au$_{32}$
%hollow cage can be constructed by replacing each face of the $I_\mathrm{h}-$C$_{60}$
%fullerene polyhedron by a gold atom resulting in a triangulated surface of
%icosahedral symmetry.\autocite{Johansson_Au3224CaratGolden_2004} More recently,
%Karttunen et al. predicted a chiral $I-$Au$_{72}$ cage which is spherically
%aromatic.\autocite{Karttunen_IcosahedralAu72_2008} For both copper and silver
%such a hollow cage becomes rather
%unstable.\autocite{Johansson_Au3224CaratGolden_2004,%FERNANDEZ_DENSITYFUNCTIONALSTUDIES_2006} A number
%of such golden fullerenes, i.e. $I_\mathrm{h}-$Au$_{32}^-$, $T_\mathrm{d}-$Au$_{16}%^-$,
%$C_\mathrm{2v}-$Au$_\mathrm{17}^-$ and $C_\mathrm{2v}-$Au$_{18}^-$, have been %identified by
%photoelectron spectroscopy by Lai-Sheng Wang and
%co-workers.\autocite{Ji-2005,Bulusu_Evidencehollowgolden_2006} Since the
%publication of Johansson et al's
%paper\autocite{Johansson_Au3224CaratGolden_2004}, a number of other studies on
%golden fullerenes appeared, either with a hollow
%cage,\autocite{Gu-2004,Fernandez-2006,Fa-Dong-2006,Fa-Zhou-2006,%Karttunen_IcosahedralAu72_2008,Fa-Luong-2008,Chen_Structuresneutralanionic_2010,%Tian-2011,De-2012,Ning-2014,Joshi-2015}
%or with a central metal
%enclosed\autocite{Autschbach_PropertiesWAu12_2004,Zhai-2004,Gao-Bulusu-2005,%Wang_Dopinggoldencage_2007,Wang_DopingGoldenBuckyballs_2007,Fa_StructuresMAu16Ag_2008,Munoz-2013,%Manna-2013,Tang-2013}
%extending on the original work of Pyykk\"o and Runeberg on
%W@Au$_{12}$.\autocite{Pyykko_IcosahedralWAu12Predicted_2002,%Li_Experimentalobservationconfirmation_2002}
%For a recent review see Wang and Wang.\autocite{Wang-Wang-2012}
%
%In this study we explore the relationship between carbon and golden fullerene
%cages in detail as many interesting topological features known for
%fullerenes,\autocite{Cataldo-Ori-2011,Schwerdtfeger_topologyfullerenes_2015}
%such as the Goldberg-Coxeter transformation to construct larger fullerene
%cages,\autocite{Goldberg_ClassMultiSymmetricPolyhedra_1937,Coxeter-1971} can
%also be applied to the golden fullerenes. We show that a new class of golden
%fullerene structures evolve from a one-to-one mapping into the isomer space of
%fullerene graphs. With this knowledge we re-analyse the experimental
%photoelectron spectrum of the negatively charged Au$_{16}^-$ cage structure. We
%also show that stability of such hollow cage structures is not always
%guaranteed and depends on the sphericity of such systems, but is related to the
%unusual stability of the (111) fcc sheet of gold. We also explore an
%interesting topological relationship between Mackay icosahedra and halma
%transformations recently investigated for
%fullerenes.\autocite{Schwerdtfeger_topologyfullerenes_2015}
%Topological Aspects
\section{\label{sec:TopAsp}Topological Aspects}
The construction of carbon fullerenes can be explained by starting from a
graphene sheet and wrapping it around a sphere\footnote{Or any surface with
genus 0.}, which requires 12 of the hexagonal faces to be replaced by pentagons. This is a requirement imposed by Euler's polyhedral formula.
%
\begin{align}
|N|-|E|+|F|=\chi
\end{align}
%
Here, $|N|$ is the number of vertices (or atoms), $|E|$ the number of edges (or
bonds), $|F|$ the number of faces and $\chi=2-2g$ the Euler characteristic,
which is $2$ for genus $g=0$ surfaces as in convex polyhedra. As shown in
section~\ref{sec:PlanarGraphs} the number of faces and vertices can be exchanged
without changing the result of Euler's formula. This is also called a dual
transformation, and in the case of the graphene sheet this transformation results in
a (111) \ac{fcc} sheet of, for example, gold bulk. Because the symmetry is
preserved by this transformation both objects belong to the hexagonal 2D lattice
group \textit{p3m1}. To distinguish the two sheets, the graphene sheet will be
denoted \textit{p3m1}-G and the gold sheet \textit{p3m1}-T (figure~\ref{fig:graphenedual}).
\begin{figure}[htb]
\begin{center}
\subfloat[\label{subfig:graphene-sheet}]{\includegraphics[width=.4\textwidth,frame]{golddual/sheets/graphene.png}}\hspace{.05\textwidth}
\subfloat[\label{subfig:gold-sheet}]{\includegraphics[width=.4\textwidth,frame]{golddual/sheets/gold.png}}
\caption{\protect\subref{subfig:graphene-sheet} \textit{p3m1}-G graphene
and \protect\subref{subfig:gold-sheet} its dual sheet \textit{p3m1}-T
adopted in the (111) surface of fcc gold.}
\label{fig:graphenedual}
\end{center}
\end{figure}
Small cut-outs of the \textit{p3m1}-T sheet can be found as global minima for smaller
gold clusters, indicating that this represents a very stable structural motif
for gold compounds.\autocite{Assadollahzadeh_systematicsearchminimum_2009}
This concept can be extended to non-spherical structures like carbon nano-tubes
to construct gold nanowires, and there has been experimental evidence
supporting the existence of such structures\autocite{Kondo-2000}. Because they
are the duals of the carbon nano-tubes they can be constructed in the same
way.\autocite{Dresselhaus-1992} Two examples of cylindrically shaped carbon and gold structures are shown in figure~\ref{fig:nanotubedual}.
\begin{figure}[htb]
\begin{center}
\subfloat[\label{subfig:nanotube}]{\includegraphics[width=.8\textwidth]{golddual/C144.png}} \\
\subfloat[\label{subfig:gold-nanotube}]{\includegraphics[width=.8\textwidth]{golddual/Au74.png}}
\caption{\protect\subref{subfig:nanotube} $D_\mathrm{6d}-$C$_{144}$ zig-zag
fullerene nanotube and \protect\subref{subfig:gold-nanotube} its dual
$D_\mathrm{6d}-$Au$_{74}$.}
\label{fig:nanotubedual}
\end{center}
\end{figure}
As fullerenes need to have exactly 12 pentagons, a dual fullerene will have 12
vertices of degree five instead. All other vertices will have degree six and
there are exactly as many as there are hexagons in the corresponding carbon
fullerene. The smallest carbon fullerene \ce{C20} has $|F_h|=0$ hexagons, and
all larger ones at least $|F_h|>1$. The fullerene \ce{C22}, which would contain
exactly one hexagon, is
non-existent,\autocite{Grunbaum_numberhexagonssimplicity_1963} thus, the
hypothetical \ac{GDF} \ce{Au13}\footnote{The relation between the
number of vertices in a fullerene $|N_f|$ and the number of vertices in the
corresponding dual fullerene $|N_d|$ is
$|N_d|=|F_f|=|N_f|/2+2$.\autocite{Schwerdtfeger_topologyfullerenes_2015}} also
cannot exist. Fullerenes often have much more than one stable isomer
(non-isomorphic graphs)\autocite{Fowler-atlas-2006} and because of the dual
relationship there should be as many isomers for the \acp{GDF}.
Additionally, the growth of this isomer space for fullerenes should scale the same with respect
to the number of vertices, which was found to be
$\mathcal{O}\left({|N|}^9\right)$.\autocite{Thurston_Shapespolyhedratriangulations_1998}
Both \ce{C60} and its dual \ce{Au32}, as well as their graph representations are
depicted in figure~\ref{fig:C60dual}. This relationship was first noticed in
conjunction with the prediction of
\ce{Au32},\autocite{Johansson_Au3224CaratGolden_2004} and it allows the usage of
the same algorithms used to construct fullerenes to create \acp{GDF}. For
example, using the generalised face-spiral
algorithm\autocite{Fowler-atlas-2006,Schwerdtfeger_Programfullerenesoftware_2013,Wirz-2014,Schwerdtfeger_topologyfullerenes_2015}
followed up by an embedding of the graph on a genus 0 surface and a dual
transformation.
%
\begin{figure}[htb]
\begin{center}
\subfloat[\label{subfig:c60graph}]{\includegraphics[width=.216\textwidth]{golddual/C60graph.png}}\hspace{0.05\textwidth}
\subfloat[\label{subfig:c60ih}]{\includegraphics[width=.25\textwidth]{golddual/C60Ih.png}}\hspace{0.034\textwidth}
\subfloat[\label{subfig:au32ih}]{\includegraphics[width=.25\textwidth]{golddual/Au32Ih.png}}
\caption{\protect\subref{subfig:c60graph} Schlegel diagram of C$_{60}$ (red
vertices) and its dual (blue vertices and dashed edges),
\protect\subref{subfig:c60ih} the C$_{60}$ structure, and
\protect\subref{subfig:au32ih} its dual Au$_{32}$ structure.}
\label{fig:C60dual}
\end{center}
\end{figure}
%
A recent investigation of photoelectron spectra of gold clusters considered the
existence of a $T_\text{d}$-\ce{Au16^-} cluster to explain the experimental
findings.\autocite{Bulusu_Evidencehollowgolden_2006} This cluster would be dual
to \ce{C28} and has exactly two isomers: $T_\text{d}$-\ce{Au16} and
$D_2$-\ce{Au16}. In the above study, the $D_2$-symmetric isomer has not been
considered to explain the observed spectra, which naturally raises the question
whether this isomer's photoelectron spectra is similar or even capable of
explaining the observations better.
The question of which structure is dominating the experimental spectrum is
closely related to the question of which structure is thermodynamically more stable. For regular
carbon fullerenes there exists an ``isolated pentagon rule'', that states that a
carbon fullerene is more stable when none of the pentagons are in direct contact
with each other.\autocite{Kroto_stabilityfullerenesCn_1987} It is hitherto
unknown if there is an equivalent ``isolated vertex of degree five rule'' for
dual fullerene structures.
As mentioned before, methods like the Goldberg-Coxeter transformation can be used
to construct larger dual fullerenes from smaller
ones.\autocite{Goldberg_ClassMultiSymmetricPolyhedra_1937,Coxeter-1971,Dutour_GoldbergCoxeterConstructionvalent_2004}
The original Goldberg-Coxeter transformation was carried out on the dodecahedron (\ce{C20}
fullerene)\autocite{Goldberg_ClassMultiSymmetricPolyhedra_1937,Coxeter-1971}, but
it can be shown that it can be applied to any fullerene
graph.\autocite{Schwerdtfeger_topologyfullerenes_2015} The transformation
$GC_{k,l}$ can be controlled by two integer parameters $k,l$ describing the
scaling and rotation of the mesh on which the transformation is carried out. The
symmetry of the original fullerene is preserved if $k=l$ (leapfrog
transformation) or $l=0$ (halma transformation). Some important transformations
are for example
$GC_{1,1}$[$I_\mathrm{h}-$C$_{20}$]=$I_\mathrm{h}-$C$_{60}$\autocite{Fowler-atlas-2006}
and $GC_{2,0}$[$I_\mathrm{h}-$C$_{20}$]=$I_\mathrm{h}-$C$_{80}$, both preserving
the initial point group symmetry. In case of the gold clusters the same
transformations results in the respective dual representations, i.e.
$GC_{1,1}$[$I_\mathrm{h}-$Au$_{12}$]=$I_\mathrm{h}-$Au$_{32}$ and
$GC_{2,0}$[$I_\mathrm{h}-$Au$_{12}$]= $I_\mathrm{h}-$Au$_{42}$. Both of these
structures have been proposed previously to be stable
hollow cages.\autocite{Johansson_Au3224CaratGolden_2004} The new vertex count of
$GC_{k,l}[\ce{Au_{|N_d|}}]$ is
%
\begin{align}
|N_\text{d}'| = (k^2+kl+l^2)(|N_\text{d}|-2) + 2.\label{eqn:dualvertex}
\end{align}
An often encountered structural motif in gold clusters is the Mackay
icosahedron.\autocite{Nam2002,Wang-Wang-2011} Although this is not a hollow
structure, it is related to dual fullerenes as it is made up of multiple
icosahedral shells. Each individual shell $m$ consists of
%
\begin{align}
|N_\text{shell}|=10m^2+2\label{eqn:MackayShells}
\end{align}
%
atoms, resulting, when summing up, in the magical cluster numbers 13, 55, 147, 309, and so
on.\autocite{Mackay-1962,Kuo_MackayAntiMackayDoubleMackay_2002}
Figure~\ref{fig:mackaylarge} shows one such icosahedral structure with $m=7$
shells and 1415 atoms.
%
\begin{figure}[htb]
\begin{center}
\includegraphics[width=4.9cm]{golddual/ico.jpg}
\caption{Mackay icosahedron with 7 shells and 1415 atoms. The outer icosahedral shell is the dual of the halma transform $GC_{7,0}$[$I_\mathrm{h}-$C$_{20}$]=$I_\mathrm{h}-$C$_{980}$.}
\label{fig:mackaylarge}
\end{center}
\end{figure}
%
The number of shells can be deduced from the number of spheres on one edge of
the icosahedron, including the spheres marked in red. There is exactly one
sphere more on the edges than there are shells, thus $m=|N_\text{edge}|-1$. The
halma pattern of a $GC_{k,0}$ transformation is clearly visible on the faces of
the icosahedron, and it turns out the icosahedral shells are in fact related to
the smallest fullerene \ce{C20} by such a transformation and a subsequent
dualisation. For this process equation~\eqref{eqn:dualvertex} becomes
%
\begin{align}
|N_\text{d}'| = k^2(|N_\text{d}|-2) + 2,
\end{align}
%
and with $|N_\text{d}|=12$ (as \ce{Au12} is the dual of \ce{C20}) this is equal
to equation~\eqref{eqn:MackayShells}. The parameter $k$ of the transformation
$GC_{k,0}[\ce{C20}]$ therefore defines which shell of the icosahedron is
created by the Goldberg-Coxeter transformation with subsequent dualisation.
The relationship between carbon fullerenes and hollow gold clusters can be used
to name the latter in the same way as the carbon fullerenes. For example, this
can be achieved by using the canonical face spiral pentagon indices (FSPI) in
combination with the numbering scheme introduced by
Manolopoulos.\autocite{Fowler-atlas-2006} A complete and unique method for
naming polyhedra extending the original algorithm by Manolopoulos has been
developed recently.\autocite{Wirz_Namingpolyhedrageneral_2018} In the following
sections the golden dual fullerenes from \ce{Au12} to \ce{Au20} (excluding
\ce{Au13}) will be investigated by means of \ac{DFT} calculations.
%Fullerenes show rich and mathematically interesting topological
%features\autocite{Cataldo-Ori-2011,Schwerdtfeger_topologyfullerenes_2015},
%which have been described for example in the works of Fowler and
%Manolopoulos\autocite{Fowler-atlas-2006}, and most recently by our research
%group in Auckland.\autocite{Schwerdtfeger_topologyfullerenes_2015} They can be
%thought of by wrapping a graphene sheet around a sphere (or more generally a
%genus 0 surface), but introducing 12 pentagons (no more and no less) to fulfil
%Euler's polyhedral formula,
%%
%\begin{equation}
% \label{eq:euler}
% N + F -E = \chi
%\end{equation}
%%
%where $N$ is the number of vertices (atoms), $F$ is the number of faces
%(rings), $E$ is the number of edges (bonds) and $\chi$ is called the Euler
%characteristic with $\chi=2$ for convex
%polyhedra.\autocite{Kotschick_TopologyCombinatoricsSoccer_2006} Euler's formula
%already shows the symmetry between the number of vertices $N$ and the number of
%faces $F$, as their role can be interchanged without violating Euler's theorem.
%Interchanging the roles of vertices and faces in a graphene sheet leads to a
%(111) sheet (surface) of an (for example) fcc structure adopted in bulk gold
%(both belonging to the hexagonal 2D lattice group \textit{p3m1}), where the
%dual vertex is in the center of the hexagon connected by edges to the
%neighboring dual vertices. Several smaller gold clusters found in the search
%for global minima are in fact cut-outs from this (111) fcc
%sheet,\autocite{Assadollahzadeh_systematicsearchminimum_2009} denoted as
%\textit{p3m1}-T in the following (see figure~\ref{fig:graphenedual}).
%To view
%it in a different way, the hexagons in the graphene sheets are exactly the
%Voronoi cells in the \textit{p3m1}-T sheet. As an interesting side aspect we
%mention the helical multi-shell (chiral) gold nanowires found experimentally by
%Kondo and Takayanagi,\autocite{Kondo-2000} which are duals of multi-shell
%(chiral) carbon nanotubes.\autocite{Johansson_Au3224CaratGolden_2004} These
%gold nanowires can be constructed exactly in the same way as carbon nanotubes
%using the chiral vector $C_h(n,m)$ on a hexagonal sheet as described in detail
%for example by Dresselhaus and co-workers.\autocite{Dresselhaus-1992} As an
%example we show the $D_\mathrm{6d}$ fullerene nanotube and its dual structure in
%figure~\ref{fig:nanotubedual}.
%The requirement to have 12 pentagons in a fullerene graph with $F_h$ hexagons
%($F_h$=0 for C$_{20}$ and $F_h > 1$ for all other fullerenes) implies for a
%fullerene dual to have exactly 12 vertices of degree five and the remaining of
%degree six. In fact it is well known that C$_{22}$ cannot exist as a
%fullerene,\autocite{Grunbaum_numberhexagonssimplicity_1963} which implies that
%its hypothetical dual Au$_{13}$ does not exist either (the number of vertices
%$N_d$ in the dual is identical to the number of faces in a fullerene,
%$N_d=F_f=N_f/2+2$,\autocite{Schwerdtfeger_topologyfullerenes_2015} using
%symbols $f$ and $d$ for the fullerene and its dual respectively). Because there
%is a one-to-one correspondence between a fullerene and its dual graph, we have
%as many isomers (nonisomorphic graphs) for C$_{N_f}$ as we have for
%Au$_{N_f/2+2}$ and dualization preserves the point group symmetry. Here we
%mention that according to Thurston, the number of isomers increases
%polynomially in ninth leading order with the number of vertices, i.e.
%$\sim\mathcal{O}({N_f^9})$.\autocite{Thurston_Shapespolyhedratriangulations_1998}
%Au$_{32}$ was the first of such golden fullerenes postulated by Johansson et
%al. to be a rather stable hollow cluster, and they were the first ones
%mentioning that these golden dual fullerenes (GDF) are obtained from fullerene
%graphs.\autocite{Johansson_Au3224CaratGolden_2004} Au$_{32}$ is shown in
%figure~\ref{fig:C60dual} together with its dual, C$_{60}$ and the corresponding
%graph representation (twice the dual transformation leads back to the original
%polyhedron or graph). Now that we established an isomorphism between a
%fullerene graph and its dual, we can easily construct isomers of golden
%fullerenes by using standard algorithms for the construction of fullerenes,
%such as the generalized face-spiral
%algorithm,\autocite{Fowler-atlas-2006,Schwerdtfeger_Programfullerenesoftware_2013,%Wirz-2014,Schwerdtfeger_topologyfullerenes_2015}
%embedding the graph on a genus 0 surface and finally transforming the cage to
%its dual.
%As an example we mention Au$_{16}$ as the dual of C$_{28}$. Checking the list
%of possible isomers\autocite{Brinkmann_HouseGraphsdatabase_2013} we see that
%there are two possible non-isomorphic structures, $D_2-$Au$_{16}$ and
%$T_\mathrm{d}-$Au$_{16}$. However, only the more symmetric $T_\mathrm{d}-$Au$_{16}%^-$ has been
%considered as a possible candidate in recent photoelectron spectroscopy
%experiments.\autocite{Bulusu_Evidencehollowgolden_2006} The question naturally
%arises if the other negatively charged $D_\mathrm{2}$ isomer has a similar %photoelectron
%spectrum and is more stable or not compared to the $T_\mathrm{d}$ isomer. In fact,
%Au$_{32}$ which is the dual of C$_{60}$ has 1812 different isomers with only
%one fulfilling the isolated pentagon rule (IPR) as proposed by
%Kroto.\autocite{Kroto_stabilityfullerenesCn_1987} For example, in a recent
%paper Fa and Dong reported on a hollow gold $D_\mathrm{6d}-$Au$_{26}$
%cluster.\autocite{Fa-Dong-2006,Fa-Luong-2008} Looking at the list of possible
%fullerenes we see that there are 199 possible isomers for dual fullerene
%structures, and in fact there are two possible isomers having $D_\mathrm{6d}$
%symmetry. This just highlights the rich topology of such dual fullerenes.
%For the dual structures we do not know if a similar rule applies, that is an
%``isolated vertex rule'' of degree five (IVR5). In fullerenes the pentagons are
%responsible for the curvature of the carbon cage and for the overall symmetry
%and structure, with connected hexagons building planar sub-structures on the
%polyhedron. Here we mention that the Mackay icosahedron (discussed below) shows
%exactly that feature.
%\textit{p3m1}-G sheets have been considered by Goldberg and Coxeter for the
%construction of larger
%fullerenes.\autocite{Goldberg_ClassMultiSymmetricPolyhedra_1937,Coxeter-1971,%Dutour_GoldbergCoxeterConstructionvalent_2004}
%The original Goldberg-Coxeter transformation superimposes a hexagonal mesh on
%the surface of the C$_{20}$ dodecahedron forming a new polyhedron with leaving
%the number of pentagons at exactly
%12.\autocite{Goldberg_ClassMultiSymmetricPolyhedra_1937,Coxeter-1971} This
%transformation can be applied to any fullerene
%isomer.\autocite{Schwerdtfeger_topologyfullerenes_2015} The Goldberg-Coxeter
%transformation $GC_{k,l}$ increases the number of vertices for a fullerene by a
%factor of $(k^2+kl+l^2)$, where $k$ and $l$ are integers describing the scale
%and orientation of the
%mesh.\autocite{Dutour_GoldbergCoxeterConstructionvalent_2004,%Schwerdtfeger_topologyfullerenes_2015}
%If $k=l$ or $l=0$ the point group symmetry is preserved. For example, we have
%$GC_{1,1}$[$I_\mathrm{h}-$C$_{20}$]=$I_\mathrm{h}-$C$_{60}$ (leapfrog
%transformation)\autocite{Fowler-atlas-2006} and
%$GC_{2,0}$[$I_\mathrm{h}-$C$_{20}$]=$I_\mathrm{h}-$C$_{80}$ (halma transformation), or in the
%dual case applying the same procedure to the \textit{p3m1}-T sheet for our gold
%fullerenes $GC_{1,1}$[$I_\mathrm{h}-$Au$_{12}$]=$I_\mathrm{h}-$Au$_{32}$ and
%$GC_{2,0}$[$I_\mathrm{h}-$Au$_{12}$]= $I_\mathrm{h}-$Au$_{42}$. Simple algebra shows that
%$GC_{k,l}$[Au$_{N_d}$] has a new vertex count of
%%
%\begin{equation}
% \label{eq:dualvertex}
%N_d'=(k^2+kl+l^2)(N_d-2)+2
%\end{equation}
%
%Both $I_\mathrm{h}-$Au$_{32}$ and $I_\mathrm{h}-$Au$_{42}$ have been postulated as stable %golden
%fullerenes before,\autocite{Johansson_Au3224CaratGolden_2004} and more recently
%the chiral $I-$Au$_{72}$\autocite{Karttunen_IcosahedralAu72_2008} which is
%nothing else as the dual of $GC_{2,1}$[$I_\mathrm{h}-$C$_{20}$] = $I-$C$_{140}$, which
%is chiral as well as symmetry is conserved upon dualization.
%Now it almost seems trivial to relate Mackay icosahedra\autocite{Mackay-1962}
%well known for gold clusters\autocite{Nam2002,Wang-Wang-2011} to fullerenes. We
%might call them "multi-walled halma-transformed icosahedral" dual fullerenes in
%analogous way to the multi-walled gold nanowires. A Mackay icosahedron is a
%closed packed multi-shell structure each shell being an icosahedron with
%%
%\begin{equation}
% \label{eq:mackay}
%N_\text{shell}=10k^2+2
%\end{equation}
%%
%number of atoms in each shell with increasing $k$. This gives the well known
%magic cluster numbers of (including the central atom) 13, 55, 147, 309, 561,
%... derived from
%%
%\begin{equation}
% \label{eq:mackaytotal}
%N_\text{total}=1+2\sum_{k=1}^{m_\text{shell}}\left( 5k^2+1 \right)=(10m_\text{shell}^3%+15m_\text{shell}^2+11m_\text{shell}+3)/3
%\end{equation}
%
%with $m_\text{shell} \ge 1$. One such Mackay icosahedron with $m_\text{shell}$=7 and
%$N_\text{total}$=1415 is shown in figure~\ref{fig:mackaylarge}. The triangles
%clearly show the halma pattern of a Goldberg-Coxeter $GC_{k,0}$ transformation.
%Because each transformation brings a new vertex on the icosahedral edge, we can
%just deduct the number of shells by counting the number of atoms at one edge of
%a triangle $N_\text{edge}$, i.e. $m_\text{shell}=N_\text{edge}-1$, which gives 8 atoms and 7
%icosahedral shells for the Mackay icosahedron shown in figure~\ref{fig:mackaylarge}.
%%
%
%%
%Mackay pointed out that the packing density (or atomic packing factor) for $N
%\rightarrow \infty$ with $\rho$=0.68818 is not too different from a closed
%packed structure such as fcc with
%$\rho=\pi/\sqrt{18}=0.74048$,\autocite{Mackay-1962} one reason why icosahedral
%cluster growth is often seen. The number of atoms in a shell $N_\text{shell}$
%directly corresponds to the number of faces in a halma transformed C$_{20}$,
%i.e. for $l=0$ in the Goldberg-Coxeter transformation and starting with
%$N_d=12$ in equation~\eqref{eq:dualvertex} we have $N_d'=k^2(N_d-2)+2 = 10k^2+2$
%identical with the formula given by Mackay.
%Finally we mention that we can name the different isomers of the golden dual
%fullerenes exactly in the same way as we do for the fullerenes by using the
%canonical face spiral pentagon indices (FSPI) and the numbering scheme
%introduced by Fowler and Manolopoulos,\autocite{Fowler-atlas-2006} keeping in
%mind that the face spiral for fullerenes now becomes a vertex spiral for the
%dual triangulated surface. We are now turning to a detailed analysis of all
%possible golden dual fullerenes from $I_\mathrm{h}-$Au$_{12}$, Au$_{14}$ to Au$_{20}$
%and $I_\mathrm{h}-$Au$_{32}$ by quantum chemical calculations.
\section{Computational Details}
Program \textsc{Fullerene}\autocite{Schwerdtfeger_Programfullerenesoftware_2013}
has been used to construct initial structures of all isomers of the golden dual
fullerenes from Au$_{12}$ to Au$_{20}$ using a recently developed force-field
for fullerenes\autocite{Wirz_smallfullerenesgraphene_2015} (excluding the
non-existing golden dual fullerene Au$_{13}$). The following isomers need to be
considered according to the isomer list for the fullerenes (number in
parenthesis gives the number of different isomers of same
symmetry):\autocite{Brinkmann_HouseGraphsdatabase_2013,Schwerdtfeger_Programfullerenesoftware_2013}
$I_\mathrm{h}-$Au$_{12}$, $D_\mathrm{6d}-$Au$_{14}$, $D_\mathrm{3h}-$Au$_{15}$,
$D_\mathrm{2}-$Au$_{16}$, $T_\mathrm{d}-$Au$_{16}$, $D_\mathrm{5h}-$Au$_{17}$,
$C_\mathrm{2v}-$Au$_{17}$(2), $D_\mathrm{3h}-$Au$_{18}$,
$D_\mathrm{3d}-$Au$_{18}$, $D_\mathrm{3}-$Au$_{18}$, $D_\mathrm{2}-$Au$_{18}$,
$C_\mathrm{3}-$Au$_{18}$(2), $C_\mathrm{3v}-$Au$_{19}$,
$C_\mathrm{2}-$Au$_{19}$(3), $C_\mathrm{s}-$Au$_{19}$(2),
$D_\mathrm{6h}-$Au$_{20}$, $D_\mathrm{3h}-$Au$_{20}$,
$D_\mathrm{2d}-$Au$_{20}$(2), $C_\mathrm{2v}-$Au$_{20}$,
$D_\mathrm{2}-$Au$_{20}$(2), $C_\mathrm{2}-$Au$_{20}$(3),
$C_\mathrm{2}-$Au$_{20}$(2), $C_\mathrm{1}-$Au$_{20}$(2) and
$I_\mathrm{h}-$Au$_{32}$. The initial force-field optimised structures scaled to
an approximate internuclear distance were then refined by using the
Predew-Burke-Ernzerhof \ac{GGA}
functional\autocite{Perdew_GeneralizedGradientApproximation_1996,Perdew_GeneralizedGradientApproximation_1997}
corrected for dispersion interactions using Grimme's method
(PBE-D3)\autocite{Grimme_consistentaccurateinitio_2010,Grimme_Effectdampingfunction_2011}
together with a Los-Alamos scalar relativistic effective core potential for gold
and the accompanying double-zeta basis sets.\autocite{Wadt1985} Note that the
PBE functional was recently considered to perform well for gold
clusters.\autocite{Mancera_alternativemethodologyassess_2015} For several
selected clusters the geometries obtained were checked for accuracy by carrying
out calculations using a small core scalar relativistic Stuttgart
pseudopotential\autocite{Figgen_Energyconsistentpseudopotentialsgroup_2005}
together with an augmented valence double-zeta basis set by Peterson and
Puzzarini.\autocite{Peterson-2005} For comparison, the compact global minimum
cluster structures recently published for the neutral
compounds\autocite{Assadollahzadeh_systematicsearchminimum_2009} and for the
negatively charged
species\autocite{Schooss_Determiningsizedependentstructure_2010,Lechtken_Structuredeterminationgold_2009}
were calculated.
The simulation of the photoelectron spectra has been carried out by artificial
broadening the spectrum of orbital energies with Gaussian functions. The
standard deviation $\sigma$ for these functions was chosen to be 0.035~eV in
qualitative agreement with the experimental spectra. The orbital energies were
calculated using the PBE density functional with the
def2-SVP\autocite{Weigend_Balancedbasissets_2005} double-zeta basis implemented
in \textsc{Turbomole} 7.0.\autocite{_TURBOMOLEV72015_} The core region was
described using an effective core potential including scalar relativistic
effects. The calculated electron affinities were used as the onset value for
simulating the photoelectron spectra.
For the calculation of the (111) fcc sheet and the fcc bulk structure of gold
the program package VASP5\autocite{Kresse_Efficiencyabinitiototal_1996} was
used, utilizing a plane-wave basis set (cut-off energy $E_c=350$~eV) and the
standard \ac{PAW} datasets for the elements to model the electron-ion
interaction\autocite{Blochl_Projectoraugmentedwavemethod_1994,Kresse_ultrasoftpseudopotentialsprojector_1999}.
The electron-electron interaction was modelled within the \ac{GGA} to the
exchange-correlation energy functional as described above and dispersive effects
were taken into account by employing Grimme's D3 dispersion correction with
Becke-Johnson
damping.\autocite{Grimme_consistentaccurateinitio_2010,Grimme_Effectdampingfunction_2011}
Brillouin zone integrations were carried out on $\Gamma$-centred Monkhorst-Pack
grids of $k$-points with a distance of 0.2~\AA$^{-1}$. The cohesive energy is
defined as the atomisation energy per atom keeping in mind that one gold atom is
negatively charged for the anionic clusters.
In order to discuss how much the gold cages deviate from sphericity compared to
the dual fullerene structure, the previously introduced definition of a \ac{MDS}
was used,\autocite{Schwerdtfeger_Programfullerenesoftware_2013}
%
\begin{equation}
\min\limits_{c_\mathrm{MDS} \in \mathrm{CH}(S)} \frac{1}{N} \sum _{i} \left|R_\mathrm{MDS} -\| \mathbf{p}_{i}-\mathbf{c}_\mathrm{MDS} \| \right|
\end{equation}
with the \ac{MDS} radius defined as
\begin{equation}
R_{\mathrm{MDS}} =\frac{1}{N} \sum _{i}\| \mathbf{p}_{i} -\mathbf{c}_{\mathrm{MDS}} \|.
\label{eq:RMDS}
\end{equation}
%
Here $S$ is the set of $n$ points $\mathbf{p}_i$ ($i=1,\ldots ,n$) in
$3$-dimensional space, $\mathrm{CH}(S)$ its convex hull, $\|\cdot\| $ the
Euclidean norm, and $\mathbf{c}_\mathrm{MDS}$ is the barycentre of the \ac{MDS}
with radius $R_\mathrm{MDS}$. In other words, the procedure tries to locate a
sphere that approximates the position of the vertices well. A measure for
distortion from spherical symmetry through the
\ac{MDS} is defined as\autocite{Schwerdtfeger_Programfullerenesoftware_2013}
%
\begin{equation}
\label{eq:DMDS}
D_{\mathrm{MDS}} = \frac{100}{N R_\mathrm{min}} \sum_{i=1}^N \left|R_{\mathrm{MDS}} - \|\mathbf{p}_i - \mathbf{c}_{\mathrm{MDS}}\| \right|,
\end{equation}
where $R_\mathrm{min}$ is the smallest bond distance found in the cluster. The pentagon index $N_p$ is defined as
\begin{equation}
\label{pentindex}
N_p = \frac{1}{2}\sum_{k=1}^{5} kp_k \quad \text{ with } \quad \sum_{k=0}^{5} p_k = 12
\end{equation}
%
where the pentagon indices $(p_i | i=0, \dots , 5)$ define the number of
pentagons attached to another pentagon.\autocite{Fowler-atlas-2006}
\section{Structure and Stability}
The results for the neutral and negatively charged gold clusters are collected
in tables~\ref{tab:neutral} and \ref{tab:anion} respectively. The dual fullerene
structures are compared to the known global minimum structures in these tables,
and the different isomers are numbered according to their canonical degree 5
vertex spiral, identical to the canonical face spiral pentagon indices for
fullerenes.\autocite{Fowler-atlas-2006} Calculations for the most stable neutral
and anionic compact Au$_n$ clusters for comparison are also included and are
listed in table~\ref{tab:Aun}. The investigated structures for the negatively
charged gold clusters are depicted in figures~\ref{fig:Au1219-} and
\ref{fig:Au20-}, and the energy differences compared to the global minimum
structures are shown in figure~\ref{fig:AunMinus2}.
%
%
\begin{figure}[htbp]
\begin{center}
\subfloat[12:1 ]{\includegraphics[width=0.25\textwidth]{golddual/anions/Au12.png}}
\subfloat[14:1 ]{\includegraphics[width=0.25\textwidth]{golddual/anions/Au14.png}}
\subfloat[15:1 ]{\includegraphics[width=0.25\textwidth]{golddual/anions/Au15.png}}
\subfloat[16:1 ]{\includegraphics[width=0.25\textwidth]{golddual/anions/Au16-D2.png}}\\
\subfloat[16:2 ]{\includegraphics[width=0.25\textwidth]{golddual/anions/Au16-Td.png}}
\subfloat[17:1 ]{\includegraphics[width=0.25\textwidth]{golddual/anions/Au17-D5h.png}}
\subfloat[17:2 ]{\includegraphics[width=0.25\textwidth]{golddual/anions/Au17-C2v-1.png}}
\subfloat[17:3 ]{\includegraphics[width=0.25\textwidth]{golddual/anions/Au17-C2v-2.png}}\\
\subfloat[18:1 ]{\includegraphics[width=0.25\textwidth]{golddual/anions/Au18-C2-1.png}}
\subfloat[18:2 ]{\includegraphics[width=0.25\textwidth]{golddual/anions/Au18-D2.png}}
\subfloat[18:3 ]{\includegraphics[width=0.25\textwidth]{golddual/anions/Au18-D3d.png}}
\subfloat[18:4 ]{\includegraphics[width=0.25\textwidth]{golddual/anions/Au18-C2-2.png}}\\
\subfloat[18:5 ]{\includegraphics[width=0.25\textwidth]{golddual/anions/Au18-D3h.png}}
\subfloat[18:6 ]{\includegraphics[width=0.25\textwidth]{golddual/anions/Au18-D3.png}}
\subfloat[19:1 ]{\includegraphics[width=0.25\textwidth]{golddual/anions/Au19-C2-1.png}}
\subfloat[19:2 ]{\includegraphics[width=0.25\textwidth]{golddual/anions/Au19-Cs-1.png}}\\
\subfloat[19:3 ]{\includegraphics[width=0.25\textwidth]{golddual/anions/Au19-Cs-2.png}}
\subfloat[19:4 ]{\includegraphics[width=0.25\textwidth]{golddual/anions/Au19-C2-2.png}}
\subfloat[19:5 ]{\includegraphics[width=0.25\textwidth]{golddual/anions/Au19-C2-3.png}}
\subfloat[19:6 ]{\includegraphics[width=0.25\textwidth]{golddual/anions/Au19-C3v.png}}
\caption{Structures of anionic gold clusters (Au$_{12}^-$ to Au$_{19}^-$).}
\label{fig:Au1219-}
\end{center}
\end{figure}
%
\begin{figure}[htbp]
\begin{center}
\subfloat[20:1 ]{\includegraphics[width=0.25\textwidth]{golddual/anions/Au20-C2-1.png}}
\subfloat[20:2 ]{\includegraphics[width=0.25\textwidth]{golddual/anions/Au20-D2-1.png}}
\subfloat[20:3 ]{\includegraphics[width=0.25\textwidth]{golddual/anions/Au20-C1-1.png}}
\subfloat[20:4 ]{\includegraphics[width=0.25\textwidth]{golddual/anions/Au20-Cs-1.png}}\\
\subfloat[20:5 ]{\includegraphics[width=0.25\textwidth]{golddual/anions/Au20-D2-2.png}}
\subfloat[20:6 ]{\includegraphics[width=0.25\textwidth]{golddual/anions/Au20-D2d-1.png}}
\subfloat[20:7 ]{\includegraphics[width=0.25\textwidth]{golddual/anions/Au20-C1-2.png}}
\subfloat[20:8 ]{\includegraphics[width=0.25\textwidth]{golddual/anions/Au20-Cs-2.png}}\\
\subfloat[20:9 ]{\includegraphics[width=0.25\textwidth]{golddual/anions/Au20-C2v.png}}
\subfloat[20:10]{\includegraphics[width=0.25\textwidth]{golddual/anions/Au20-C2-2.png}}
\subfloat[20:11]{\includegraphics[width=0.25\textwidth]{golddual/anions/Au20-C2-3.png}}
\subfloat[20:12]{\includegraphics[width=0.25\textwidth]{golddual/anions/Au20-C2-4.png}}\\
\subfloat[20:13]{\includegraphics[width=0.25\textwidth]{golddual/anions/Au20-D3h.png}}
\subfloat[20:14]{\includegraphics[width=0.25\textwidth]{golddual/anions/Au20-D2d-2.png}}
\subfloat[20:15]{\includegraphics[width=0.25\textwidth]{golddual/anions/Au20-D6h.png}}
\caption{Structures of anionic gold clusters (Au$_{20}^-$).}
\label{fig:Au20-}
\end{center}
\end{figure}
The optimised gold clusters can be sorted according to whether they can be
derived from a dual fullerene structure, or more generally from a cubic
polyhedral graph, or not. In this case Euler's polyhedral formula can be
simplified, which upon dualisation gives a triangulation of a sphere obeying the
formula
%
\begin{equation}
\label{eq3valent}
\Gamma=\sum_{n=3}(6-n)|N_n| = 12,
\end{equation}
%
where $|N_n|$ denotes the number of $n$-valent vertices. Any deviation from
$\Gamma=12$ implies that the polyhedron is not a triangulation of a sphere. As mentioned before, for
dual fullerenes only values of $N_5=12$ and $N_6=\{0,2,3,4,5,\dots\}$ are
allowed. Hence, a true dual fullerene structure is obtained in case of a
complete triangulation and 12 vertices of degree five.
%
\begin{table}[htbp]
\centering
\setlength{\tabcolsep}{1.5pt}
\footnotesize{
\caption{Topological parameters for the neutral gold clusters. Number of
gold atoms and isomer numbers of the corresponding fullerene in canonical
order of the pentagon spiral indices,\autocite{Fowler-atlas-2006} ideal and
actual point group symmetry, energy differences $\Delta E_g$ to the most
stable neutral cluster of same size and binding energy per atom $\Delta E_n
= [E(\textrm{Au}_n)-nE(\textrm{Au})]/n$ (in eV), shortest and largest bond
distance (in \AA), pentagon index (PI) $N_p$, and distortion parameter $D$
(in \%) for the initial force-field optimised fullerene structure (F) and
the \acs{GDF}.}
\label{tab:neutral}
\begin{tabular}{lllrrrrrrrrrrrr}
\toprule
\multicolumn{1}{c}{ } & \multicolumn{2}{c}{ symmetry } & \multicolumn{2}{c}{stability} & \multicolumn{4}{c}{ vertices } & & \multicolumn{2}{c}{ bondlengths } & PI & \multicolumn{2}{c}{ $D$ } \\
isomer & ideal & actual & $\Delta E_n$ &$\Delta E_g$ & \multicolumn{1}{c}{$|N_4|$} & \multicolumn{1}{c}{$|N_5|$} & \multicolumn{1}{c}{$|N_6|$} & \multicolumn{1}{c}{$|N_7|$} & $\Gamma$ & shortest & largest & $N_p$ & F & GDF\\\midrule
12:1 & $I_\mathrm{h}$ & $D_\mathrm{4h}$ & $-2.058$ & $0.485$ & $8$ & $0$ & $4$ & $0$ & 16 & $2.798$ & $2.895$ & 30 & 0 & 21.1 \\
14:1 & $D_\mathrm{6d}$ & $D_\mathrm{2d}$ & $-2.134$ & $1.173$ & $0$ & $12$ & $2$ & $0$ & 12 & $2.739$ & $3.048$ & 24 & 6.1 & 23.4 \\
15:1 & $D_\mathrm{3h}$ & $C_\mathrm{2v}$ & $-2.192$ & $-0.083$ & $0$ & $12$ & $3$ & $0$ & 12 & $2.786$ & $2.901$ & 21 & 5.1 & 29.2 \\
16:1 & $D_\mathrm{2}$ & $D_\mathrm{2 }$ & $-2.247$ & $0.223$ & $0$ & $12$ & $4$ & $0$ & 12 & $2.770$ & $2.917$ & 20 & 7.9 & 24.3 \\
16:2 & $T_\mathrm{d}$ & $D_\mathrm{2d}$ & $-2.233$ & $0.440$ & $0$ & $12$ & $4$ & $0$ & 12 & $2.716$ & $2.996$ & 18 & 1.3 & 28.5 \\
17:1 & $D_\mathrm{5h}$ & $C_\mathrm{s}$ & $-2.259$ & $0.177$ & $2$ & $8$ & $3$ & $3$ & 12 & $2.747$ & $3.026$ & 20 & 11.5 & 17.3 \\
17:2 & $C_\mathrm{2v}$ & $C_\mathrm{2v}$ & $-2.272$ & $-0.038$ & $0$ & $12$ & $5$ & $0$ & 12 & $2.769$ & $2.931$ & 18 & 7.6 & 19.1 \\
17:3 & $C_\mathrm{2v}$ & $C_\mathrm{2v}$ & $-2.277$ & $-0.128$ & $0$ & $12$ & $5$ & $0$ & 12 & $2.762$ & $3.139$ & 17 & 5.5 & 20.8 \\
18:1 & $C_\mathrm{2}$ & $C_\mathrm{2 }$ & $-2.307$ & $0.321$ & $0$ & $12$ & $6$ & $0$ & 12 & $2.736$ & $2.934$ & 17 & 9.2 & 16.9 \\
18:2 & $D_\mathrm{2}$ & $D_\mathrm{2 }$ & $-2.290$ & $0.627$ & $0$ & $12$ & $6$ & $0$ & 12 & $2.733$ & $2.935$ & 18 & 11.6 & 17.2 \\
18:3 & $D_\mathrm{3d}$ & $D_\mathrm{3d}$ & $-2.275$ & $0.896$ & $0$ & $12$ & $6$ & $0$ & 12 & $2.714$ & $2.894$ & 18 & 12.1 & 18.2 \\
18:4 & $C_\mathrm{2}$ & $C_\mathrm{2 }$ & $-2.321$ & $0.073$ & $0$ & $12$ & $6$ & $0$ & 12 & $2.749$ & $2.931$ & 16 & 7.2 & 18.7 \\
18:5 & $D_\mathrm{3h}$ & $D_\mathrm{3h}$ & $-2.303$ & $0.386$ & $0$ & $12$ & $6$ & $0$ & 12 & $2.763$ & $3.159$ & 8 & 15.1 & 27.3 \\
18:6 & $D_\mathrm{3}$ & $D_\mathrm{3 }$ & $-2.310$ & $0.270$ & $0$ & $12$ & $6$ & $0$ & 12 & $2.742$ & $2.945$ & 15 & 5.8 & 15.2 \\
19:1 & $C_\mathrm{2}$ & $C_\mathrm{2 }$ & $-2.298$ & $1.196$ & $0$ & $12$ & $7$ & $0$ & 12 & $2.745$ & $3.006$ & 17 & 14.9 & 26.0 \\
19:2 & $C_\mathrm{s}$ & $C_\mathrm{s }$ & $-2.307$ & $1.014$ & $0$ & $12$ & $7$ & $0$ & 12 & $2.747$ & $2.972$ & 15 & 7.5 & 20.0 \\
19:3 & $C_\mathrm{s}$ & $C_\mathrm{s }$ & $-2.304$ & $1.077$ & $0$ & $12$ & $7$ & $0$ & 12 & $2.737$ & $2.957$ & 15 & 11.9 & 28.3 \\
19:4 & $C_\mathrm{2}$ & $C_\mathrm{2 }$ & $-2.311$ & $0.935$ & $0$ & $12$ & $7$ & $0$ & 12 & $2.745$ & $2.905$ & 15 & 7.0 & 17.7 \\
19:5 & $C_\mathrm{2}$ & $C_\mathrm{2 }$ & $-2.313$ & $0.911$ & $0$ & $12$ & $7$ & $0$ & 12 & $2.734$ & $2.947$ & 14 & 6.6 & 18.7 \\
19:6 & $C_\mathrm{3v}$ & $C_\mathrm{3v}$ & $-2.316$ & $0.854$ & $0$ & $12$ & $7$ & $0$ & 12 & $2.765$ & $2.890$ & 15 & 12.7 & 30.6 \\
20:1 & $C_\mathrm{2}$ & $C_\mathrm{1 }$ & $-2.324$ & $1.684$ & $2$ & $8$ & $10$ & $0$ & 12 & $2.711$ & $2.984$ & 16 & 15.3 & 36.7 \\
20:2 & $D_\mathrm{2}$ & $D_\mathrm{2 }$ & $-2.295$ & $2.271$ & $0$ & $12$ & $8$ & $0$ & 12 & $2.699$ & $3.023$ & 18 & 20.4 & 22.0 \\
20:3 & $C_\mathrm{1}$ & $C_\mathrm{1 }$ & $-2.339$ & $1.395$ & $2$ & $8$ & $10$ & $0$ & 12 & $2.724$ & $2.954$ & 15 & 13.1 & 129.1 \\
20:4 & $C_\mathrm{s}$ & $C_\mathrm{s }$ & $-2.324$ & $1.695$ & $0$ & $12$ & $8$ & $0$ & 12 & $2.709$ & $3.023$ & 16 & 13.7 & 25.5 \\
20:5 & $D_\mathrm{2}$ & $D_\mathrm{2 }$ & $-2.332$ & $1.541$ & $0$ & $12$ & $8$ & $0$ & 12 & $2.749$ & $3.080$ & 16 & 18.5 & 17.3 \\
20:6 & $D_\mathrm{2d}$ & $C_\mathrm{2v}$ & $-2.337$ & $1.440$ & $2$ & $8$ & $10$ & $0$ & 12 & $2.752$ & $2.977$ & 14 & 9.8 & 26.6 \\
20:7 & $C_\mathrm{1}$ & $C_\mathrm{1 }$ & $-2.325$ & $1.663$ & $2$ & $9$ & $8$ & $1$ & 12 & $2.712$ & $3.019$ & 14 & 10.9 & 25.8 \\
20:8 & $C_\mathrm{s}$ & $C_\mathrm{s }$ & $-2.346$ & $1.256$ & $2$ & $8$ & $10$ & $0$ & 12 & $2.748$ & $3.057$ & 14 & 8.4 & 40.7 \\
20:9 & $C_\mathrm{2v}$ & $D_\mathrm{6h}$ & $-2.362$ & $0.938$ & $6$ & $0$ & $14$ & $0$ & 12 & $2.744$ & $2.971$ & 13 & 3.8 & 23.2 \\
20:10 & $C_\mathrm{2}$ & $C_\mathrm{2 }$ & $-2.344$ & $1.299$ & $2$ & $8$ & $10$ & $0$ & 12 & $2.726$ & $3.004$ & 14 & 12.6 & 23.9 \\
20:11 & $C_\mathrm{2}$ & $C_\mathrm{s }$ & $-2.346$ & $1.256$ & $2$ & $8$ & $10$ & $0$ & 12 & $2.747$ & $3.056$ & 13 & 8.1 & 35.8 \\
20:12 & $C_\mathrm{2}$ & $C_\mathrm{1}$ & $-2.366$ & $0.861$ & $3$ & $5$ & $4$ & $7$ & 4 & $2.719$ & $3.048$ & 13 & 5.4 & 21.1 \\
20:13 & $D_\mathrm{3h}$ & $D_\mathrm{6h}$ & $-2.362$ & $0.938$ & $6$ & $0$ & $14$ & $0$ & 12 & $2.744$ & $2.970$ & 15 & 6.5 & 27.9 \\
20:14 & $D_\mathrm{2d}$ & $D_\mathrm{2d}$ & $-2.311$ & $1.948$ & $0$ & $12$ & $8$ & $0$ & 12 & $2.779$ & $2.929$ & 12 & 3.7 & 22.0 \\
20:15 & $D_\mathrm{6h}$ & $D_\mathrm{6h}$ & $-2.362$ & $0.936$ & $6$ & $0$ & $14$ & $0$ & 12 & $2.744$ & $2.972$ & 12 & 4.5 & 25.6 \\
32:1082 & $I_\mathrm{h}$ & $I_\mathrm{h}$ & $-2.494$ & $1.537$ & $0$ & $12$ & $20$ & $0$ & 12 & $2.793$ & $2.835$ & 0 & 0 & 7.5 \\
(111) & 2D & sheet & $-2.994$ & $-$ & $0$ & $0$ & $\infty$ & $0$ & $-$ & $2.722$ & $2.722$ & 0 & 0 & 0 \\
fcc & 3D & bulk & $-3.677$ & $-$ & $-$ & $-$ & $-$ & $-$ & $-$ & $2.897$ & $2.897$ & $-$ & $-$ & $-$ \\
\bottomrule
\end{tabular}}
\end{table}
%
%
\begin{table}[htbp]
\centering
\setlength{\tabcolsep}{1.5pt}
\footnotesize{
\caption{Topological parameters for the anionic gold clusters. Number of
gold atoms and isomer numbers of the fullerene in canonical order of the
pentagon spiral indices,\autocite{Fowler-atlas-2006} ideal and actual point
group symmetry, energy differences $\Delta E_g$ to the most stable anionic
cluster of same size and binding energy per atom $\Delta E_n =
[E(\textrm{Au}_n)-(n-1)E(\textrm{Au})-E(\textrm{Au}^-)]/n$ (in eV),
shortest and largest bond distance (in \AA), and distortion parameter $D$
(in \%) for the \acs{GDF}. }
\label{tab:anion}
\begin{tabular}{lllrrrrrrrrrr}
\toprule
\multicolumn{1}{c}{ } & \multicolumn{2}{c}{ symmetry } & \multicolumn{2}{c}{stability} & \multicolumn{4}{c}{ vertices } & & \multicolumn{2}{c}{ bondlengths } & \multicolumn{1}{c}{$D$} \\
isomer & ideal & actual & $\Delta E_n$ &$\Delta E_g$ & \multicolumn{1}{c}{$|N_4|$} & \multicolumn{1}{c}{$|N_5|$} & \multicolumn{1}{c}{$|N_6|$} & \multicolumn{1}{c}{$|N_7|$}& $\Gamma$ & shortest & largest & GDF \\\midrule
12:1 & $I_\mathrm{h}$ & $D_\mathrm{2d}$ & $-2.137$ & $0.665$ & $8$ & $0$ & $4$ & $0$ & 16 & $2.780$ & $2.869$ & 23.0 \\
14:1 & $D_\mathrm{6d}$ & $D_\mathrm{2d}$ & $-2.242$ & $-0.089$ & $0$ & $12$ & $2$ & $0$ & 12 & $2.758$ & $2.989$ & 20.3 \\
15:1 & $D_\mathrm{3h}$ & $C_\mathrm{2v}$ & $-2.281$ & $0.473$ & $0$ & $12$ & $3$ & $0$ & 12 & $2.741$ & $3.029$ & 21.2 \\
16:1 & $D_\mathrm{2}$ & $D_\mathrm{2 }$ & $-2.328$ & $0.020$ & $0$ & $12$ & $4$ & $0$ & 12 & $2.764$ & $2.905$ & 17.7 \\
16:2 & $T_\mathrm{d}$ & $D_\mathrm{2d}$ & $-2.330$ & $0.000$ & $0$ & $12$ & $4$ & $0$ & 12 & $2.738$ & $2.907$ & 16.2 \\
17:1 & $D_\mathrm{5h}$ & $D_\mathrm{5h}$ & $-2.353$ & $0.469$ & $0$ & $12$ & $5$ & $0$ & 12 & $2.757$ & $3.017$ & 13.2 \\
17:2 & $C_\mathrm{2v}$ & $C_\mathrm{2v}$ & $-2.368$ & $0.215$ & $0$ & $12$ & $5$ & $0$ & 12 & $2.742$ & $2.994$ & 14.4 \\
17:3 & $C_\mathrm{2v}$ & $C_\mathrm{2v}$ & $-2.376$ & $0.087$ & $0$ & $12$ & $5$ & $0$ & 12 & $2.731$ & $3.019$ & 14.2 \\
18:1 & $C_\mathrm{2}$ & $C_\mathrm{2 }$ & $-2.360$ & $0.589$ & $0$ & $12$ & $6$ & $0$ & 12 & $2.734$ & $2.968$ & 16.8 \\
18:2 & $D_\mathrm{2}$ & $C_\mathrm{2 }$ & $-2.346$ & $0.848$ & $0$ & $12$ & $6$ & $0$ & 12 & $2.733$ & $3.059$ & 16.8 \\
18:3 & $D_\mathrm{3d}$ & $C_\mathrm{2 }$ & $-2.348$ & $0.817$ & $4$ & $4$ & $10$ & $0$ & 12 & $2.701$ & $3.038$ & 24.3 \\
18:4 & $C_\mathrm{2}$ & $C_\mathrm{1 }$ & $-2.364$ & $0.529$ & $0$ & $12$ & $6$ & $0$ & 12 & $2.740$ & $3.048$ & 19.0 \\
18:5 & $D_\mathrm{3h}$ & $D_\mathrm{3h}$ & $-2.364$ & $0.516$ & $0$ & $12$ & $6$ & $0$ & 12 & $2.710$ & $3.023$ & 27.5 \\
18:6 & $D_\mathrm{3}$ & $D_\mathrm{3 }$ & $-2.357$ & $0.642$ & $0$ & $12$ & $6$ & $0$ & 12 & $2.734$ & $2.912$ & 14.7 \\
19:1 & $C_\mathrm{2}$ & $C_\mathrm{2 }$ & $-2.384$ & $0.967$ & $4$ & $4$ & $11$ & $0$ & 12 & $2.732$ & $2.985$ & 28.5 \\
19:2 & $C_\mathrm{s}$ & $C_\mathrm{s }$ & $-2.368$ & $1.268$ & $2$ & $9$ & $7$ & $1$ & 12 & $2.727$ & $2.989$ & 16.9 \\
19:3 & $C_\mathrm{s}$ & $C_\mathrm{3v}$ & $-2.381$ & $1.022$ & $0$ & $12$ & $7$ & $0$ & 12 & $2.755$ & $3.046$ & 32.6 \\
19:4 & $C_\mathrm{2}$ & $C_\mathrm{2 }$ & $-2.390$ & $0.853$ & $2$ & $8$ & $9$ & $0$ & 12 & $2.744$ & $3.003$ & 22.1 \\
19:5 & $C_\mathrm{2}$ & $C_\mathrm{2 }$ & $-2.398$ & $0.698$ & $2$ & $8$ & $9$ & $0$ & 12 & $2.743$ & $2.963$ & 31.3 \\
19:6 & $C_\mathrm{3v}$ & $C_\mathrm{3v}$ & $-2.381$ & $1.023$ & $0$ & $12$ & $7$ & $0$ & 12 & $2.756$ & $3.044$ & 32.4 \\
20:1 & $C_\mathrm{2}$ & $C_\mathrm{1 }$ & $-2.386$ & $0.927$ & $2$ & $8$ & $10$ & $0$ & 12 & $2.748$ & $3.032$ & 25.0 \\
20:2 & $D_\mathrm{2}$ & $D_\mathrm{2 }$ & $-2.365$ & $1.348$ & $0$ & $12$ & $8$ & $0$ & 12 & $2.731$ & $2.971$ & 43.8 \\
20:3 & $C_\mathrm{1}$ & $C_\mathrm{1 }$ & $-2.396$ & $0.716$ & $2$ & $8$ & $10$ & $0$ & 12 & $2.745$ & $2.926$ & 23.4 \\
20:4 & $C_\mathrm{s}$ & $C_\mathrm{s }$ & $-2.385$ & $0.950$ & $0$ & $12$ & $8$ & $0$ & 12 & $2.740$ & $2.939$ & 24.4 \\
20:5 & $D_\mathrm{2}$ & $D_\mathrm{2 }$ & $-2.390$ & $0.850$ & $0$ & $12$ & $8$ & $0$ & 12 & $2.775$ & $2.907$ & 37.4 \\
20:6 & $D_\mathrm{2d}$ & $C_\mathrm{s }$ & $-2.382$ & $1.001$ & $2$ & $8$ & $10$ & $0$ & 12 & $2.770$ & $2.948$ & 20.5 \\
20:7 & $C_\mathrm{1}$ & $C_\mathrm{1 }$ & $-2.384$ & $0.974$ & $0$ & $12$ & $8$ & $0$ & 12 & $2.739$ & $3.079$ & 25.3 \\
20:8 & $C_\mathrm{s}$ & $C_\mathrm{s }$ & $-2.388$ & $0.888$ & $2$ & $8$ & $10$ & $0$ & 12 & $2.761$ & $2.977$ & 22.0 \\
20:9 & $C_\mathrm{2v}$ & $D_\mathrm{6h}$ & $-2.402$ & $0.610$ & $6$ & $0$ & $14$ & $0$ & 12 & $2.731$ & $2.971$ & 27.1 \\
20:10 & $C_\mathrm{2}$ & $C_\mathrm{2 }$ & $-2.404$ & $0.568$ & $2$ & $8$ & $10$ & $0$ & 12 & $2.743$ & $2.984$ & 37.1 \\
20:11 & $C_\mathrm{2}$ & $C_\mathrm{1}$ & $-2.378$ & $1.093$ & $3$ & $8$ & $7$ & $2$ & 12 & $2.732$ & $3.018$ & 26.5 \\
20:12 & $C_\mathrm{2}$ & $C_\mathrm{s}$ & $-2.412$ & $0.407$ & $2$ & $8$ & $3$ & $6$ & 6 & $1.755$ & $2.996$ & 192.0 \\
20:13 & $D_\mathrm{3h}$ & $D_\mathrm{6h}$ & $-2.402$ & $0.610$ & $6$ & $0$ & $14$ & $0$ & 12 & $2.731$ & $2.972$ & 27.0 \\
20:14 & $D_\mathrm{2d}$ & $C_\mathrm{1}$ & $-2.405$ & $0.544$ & $2$ & $8$ & $1$ & $8$ & 12 & $2.710$ & $3.010$ & 199.2 \\
20:15 & $D_\mathrm{6h}$ & $D_\mathrm{6h}$ & $-2.361$ & $1.430$ & $0$ & $12$ & $8$ & $0$ & 12 & $2.792$ & $2.933$ & 15.2 \\
32:1082 & $I_\mathrm{h}$ & $D_\mathrm{2h}$ & $-2.524$ & $2.201$ & $0$ & $12$ & $20$ & $0$ & 12 & $2.766$ & $3.004$ & 10.4 \\
\bottomrule
\end{tabular}}
\end{table}
Tables~\ref{tab:neutral} and \ref{tab:anion} show vertex counts as well as
results from equation~\eqref{eq3valent} for the neutral and anionic clusters,
respectively. Considering only the topological parameter $\Gamma$ it is clear
that most of the optimised structures can be derived from a dual planar cubic
graph and therefore only consist of triangles. The few notable exceptions are
the isomers 12:1 and 20:12 for both the anionic and neutral structure. The ideal
icosahedral structure for the Au$_{12}$ cluster is not stable under the present
level of theory, and the optimised structure does not correspond to a
triangulation of a sphere. However, it has already been shown that this cage can
be stabilised by inserting a transition metal (e.g. tungsten) atom into the
central position of the icosahedron such that the 18 valence electron rule is
fulfilled.\autocite{Pyykko_IcosahedralWAu12Predicted_2002,Autschbach_PropertiesWAu12_2004}
Additional stabilisation of such an endohedral gold cluster can be achieved by
attaching ligands to the surface of the cluster.\autocite{Laupp-1994} Structure
20:12 converges towards a more compact cluster with an 8-fold coordinated gold
atom in the centre for both the anionic and the neutral cluster.
%
\begin{figure}[htbp]
\centering
\begin{tabular}{lp{3cm}|p{3cm}}\toprule
isomer & \multicolumn{1}{c}{neutral} & \multicolumn{1}{c}{anion} \\ \midrule
12:1 & \cellcolor{myorange} & \cellcolor{myorange} \\
14:1 & \cellcolor{mygreen} & \cellcolor{mygreen} \\
15:1 & \cellcolor{mygreen} & \cellcolor{mygreen} \\
16:1 & \cellcolor{mygreen} & \cellcolor{mygreen} \\
16:2 & \cellcolor{mygreen} & \cellcolor{mygreen} \\
17:1 & \cellcolor{myorange} & \cellcolor{mygreen} \\
17:2 & \cellcolor{mygreen} & \cellcolor{mygreen} \\
17:3 & \cellcolor{mygreen} & \cellcolor{mygreen} \\
18:1 & \cellcolor{mygreen} & \cellcolor{mygreen} \\
18:2 & \cellcolor{mygreen} & \cellcolor{mygreen} \\
18:3 & \cellcolor{mygreen} & \cellcolor{myorange} \\
18:4 & \cellcolor{mygreen} & \cellcolor{mygreen} \\
18:5 & \cellcolor{mygreen} & \cellcolor{mygreen} \\
18:6 & \cellcolor{mygreen} & \cellcolor{mygreen} \\
19:1 & \cellcolor{mygreen} & \cellcolor{myorange} \\
19:2 & \cellcolor{mygreen} & \cellcolor{myorange} \\
19:3 & \cellcolor{mygreen} & \cellcolor{mygreen} \\
19:4 & \cellcolor{mygreen} & \cellcolor{myorange} \\
19:5 & \cellcolor{mygreen} & \cellcolor{myorange} \\
19:6 & \cellcolor{mygreen} & \cellcolor{mygreen} \\
20:1 & \cellcolor{myorange} & \cellcolor{myorange} \\
20:2 & \cellcolor{mygreen} & \cellcolor{mygreen} \\
20:3 & \cellcolor{myorange} & \cellcolor{myorange} \\
20:4 & \cellcolor{mygreen} & \cellcolor{mygreen} \\
20:5 & \cellcolor{mygreen} & \cellcolor{mygreen} \\
20:6 & \cellcolor{myorange} & \cellcolor{myorange} \\
20:7 & \cellcolor{myorange} & \cellcolor{mygreen} \\
20:8 & \cellcolor{myorange} & \cellcolor{myorange} \\
20:9 & \cellcolor{myorange} & \cellcolor{myorange} \\
20:10 & \cellcolor{myorange} & \cellcolor{myorange} \\
20:11 & \cellcolor{myorange} & \cellcolor{myorange} \\
20:12 & \cellcolor{red} & \cellcolor{red} \\
20:13 & \cellcolor{myorange} & \cellcolor{myorange} \\
20:14 & \cellcolor{mygreen} & \cellcolor{red} \\
20:15 & \cellcolor{myorange} & \cellcolor{mygreen} \\
32:1082 & \cellcolor{mygreen} & \cellcolor{mygreen} \\ \bottomrule
\end{tabular}
\caption{Overview of PBE-D3 optimisation results for the dual fullerene
structures. Green: dual fullerene structure, orange: hollow structure, red:
non-hollow structure.}
\label{fig:optOverview}
\end{figure}
Figure~\ref{fig:optOverview} gives an overview over all optimised structures.
A green field marks a dual fullerene structure with exactly 12 vertices of
degree five and the remaining vertices being of degree six. These are also the
structures used in figure~\ref{fig:cohesiveenergies2} and they are more
abundant for clusters of size 14 to 19 atoms. Structures with an orange mark do
not fulfil the requirement of being a dual fullerene as they contain vertices
of degree 4. However, they are still hollow gold cages and, as mentioned
before, show a value of $\Gamma=12$. These structures can be rather similar to
the initial dual fullerene structures obtained from a force-field optimization
of the corresponding carbon cage, and are usually a result of a flattening
towards a more oblate geometry. Most of the clusters shown here preserve their
hollow cage structure with only few clusters optimising into more stable
compact structures. These are marked as red in figure~\ref{fig:optOverview}.
As illustrated by the distortion parameter $D$(F) in tables~\ref{tab:neutral}
and \ref{tab:anion}, carbon fullerenes try to adopt ``spherical'' shapes if
permitted by the distribution of pentagons. This is especially the case for
$I_\mathrm{h}$-C$_{20}$ and $I_\mathrm{h}$-C$_{60}$ with a distortion parameter
of exactly zero (i.e. all atoms lie on a sphere). In contrast, the golden dual
fullerene structures have much larger distortion parameters $D$(GDF) than their
carbon equivalent and are therefore less spheroidal. The golden dual fullerenes
usually distort into less symmetric structures, for example into oblate
structures as mentioned above.
Figure~\ref{fig:AunMinus2} shows the relative energies $\Delta E_g$ per atom
compared to the most stable compact arrangement for all optimised hollow gold
clusters.
%
\begin{figure}[htbp]
\begin{center}
\includegraphics[width=.8\textwidth]{golddual/energies.pdf}
\caption{Relative energies for the investigated dual fullerene clusters.
Energy differences compared to the most stable compact cluster (per atom) are given in eV.}
\label{fig:AunMinus2}
\end{center}
\end{figure}
%
It is immediately apparent, that the most stable dual fullerene structures can
be found in the region of 14 to 18 atoms. Some clusters in this region even
exceed the stability of formerly proposed global minimum structures. For
example, for \ce{Au16^-} the global minimum has been proposed previously to be
the tetrahedral hollow
cluster,\autocite{Schooss_Determiningsizedependentstructure_2010,Lechtken_Structuredeterminationgold_2009}
which is the dual of the tetrahedral C$_{28}$ isomer as observed experimentally
in photoelectron spectra.\autocite{Bulusu_Evidencehollowgolden_2006} It should
be noted, that Chen et al. have found the tetrahedral structure to lie 0.22~eV
above a sheet-like structure.\autocite{Chen_Structuresneutralanionic_2010}
However, our results contradict these findings as the planar structure is
predicted to be 0.939~eV higher in energy. Another interesting result from the
investigation of the cohesive energies is that the $D_\mathrm{2}$ symmetric
isomer 16:1 lies only 0.02~eV above the tetrahedral structure. Therefore, it
should also be possible to observe this isomer by experimental methods.
Possible Au$_{32}$ structures have been investigated intensively by Jalbout et
al.\autocite{Jalbout_LowSymmetryStructuresAu_2008} Table~\ref{tab:Aun} shows
their results in comparison with results from this work.
%
\begin{table}[htbp]
\centering
\setlength{\tabcolsep}{3pt}
\footnotesize{
\caption{Binding energy per atom (in eV) for investigated neutral and
anionic compact cluster compounds. For the definition of the binding energy
see tables~\ref{tab:neutral} and \ref{tab:anion}, and for the definition of
the isomers 1 and 10 for Au$_{32}$ see \citeauthor{Jalbout_LowSymmetryStructuresAu_2008}.\autocite{Jalbout_LowSymmetryStructuresAu_2008}}
\label{tab:Aun}
\begin{tabular}{llcllcllc}
\toprule
$N$ & sym. & $\Delta E_n$(neutral) & $N$ & sym. & $\Delta E_n$(neutral) & $N$ & sym. & $\Delta E_n$(anion) \\
\midrule
2 & $D_\mathrm{\infty h}$ & $-1.105$ & 13 & $C_\mathrm{2v}$ & $-2.087$ & 12 & $D_\mathrm{3h}$ & $-2.192$ \\
3 & $C_\mathrm{2v}$ & $-1.152$ & 14 & $C_\mathrm{2v}$ & $-2.218$ & 14 & $D_\mathrm{2h}$ & $-2.236$ \\
4 & $D_\mathrm{2h}$ & $-1.486$ & 15 & $C_\mathrm{s}$ & $-2.186$ & 15 & $C_\mathrm{1}$ & $-2.313$ \\
5 & $C_\mathrm{2v}$ & $-1.631$ & 16 & $C_\mathrm{s}$ & $-2.261$ & 16 & $D_\mathrm{2d}$ & $-2.330$ \\
6 & $D_\mathrm{3h}$ & $-1.875$ & 17 & $C_\mathrm{s}$ & $-2.270$ & 17 & $C_\mathrm{2v}$ & $-2.381$ \\
7 & $C_\mathrm{s}$ & $-1.833$ & 18 & $C_\mathrm{s}$ & $-2.325$ & 18 & $C_\mathrm{2v}$ & $-2.393$ \\
8 & $D_\mathrm{4h}$ & $-1.959$ & 19 & $C_\mathrm{3v}$ & $-2.361$ & 19 & $C_\mathrm{3v}$ & $-2.435$ \\
9 & $C_\mathrm{2v}$ & $-1.944$ & 20 & $T_\mathrm{d}$ & $-2.409$ & 20 & $T_\mathrm{d}$ & $-2.432$ \\
10 & $D_\mathrm{2h}$ & $-2.028$ & 32 & $C_\mathrm{3v}$ & $-2.491$ & 32 & $C_\mathrm{3v}$ & $-2.548$ \\
11 & $D_\mathrm{3h}$ & $-2.063$ & 32 & Isomer 1 & $-2.536$ & 32 & Isomer 1 & $-2.590$ \\
12 & $D_\mathrm{3h}$ & $-2.098$ & 32 & Isomer 10 & $-2.542$ & 32 & Isomer 10 & $-2.593$ \\
\bottomrule
\end{tabular}}
\end{table}
%
For both neutral and anionic clusters, isomer 10 in their work turns out to be
the most stable compact geometry and the icosahedral hollow structure 32:1082 is
less stable in both the neutral and the anionic cases. The
$C_\mathrm{3v}$-symmetric compact structure not investigated before is also
included in table~\ref{tab:Aun}. It is derived from the ideal Au$_{35}$
tetrahedron by removing three of the corner atoms of the tetrahedron and can
be viewed as a cut-out of the \ac{fcc} bulk structure. This cluster is also very
stable compared to the other structures proposed by Jalbout et al. As reflected
by the distortion parameter $D$ of the \ce{Au32} hollow cage
($D(\ce{Au32})=10.4$) it deviates slightly from an ideal icosahedral symmetry
and can be seen as pseudo-spherical.
\section{Convergence Towards the Infinite Structure}
The neutral gold clusters and their property convergence towards the bulk has
already been discussed in previous
papers.\autocite{Assadollahzadeh_systematicsearchminimum_2009} Increasing the
size of non-hollow compact clusters lowers the cohesive energy until the
clusters are large enough to be a valid representation of the bulk gold
structure. This can be seen in figure~\ref{fig:cohesiveenergies1}, where a
clear linear correlation between $N^{-1/3}$ and the cohesive energy is
depicted.
%
\begin{figure}[htb]\centering
\subfloat[\label{fig:cohesiveenergies1}]{\includegraphics[width=.49\textwidth]{golddual/cohesive.pdf}}\hfill
\subfloat[\label{fig:cohesiveenergies2}]{\includegraphics[width=.49\textwidth]{golddual/cohesive2.pdf}}
\caption{Cohesive energies for \protect\subref{fig:cohesiveenergies1} the compact gold clusters with cluster size $N$ and convergence toward the bulk \acs{fcc} structure and \protect\subref{fig:cohesiveenergies2} for the hollow gold clusters with cluster size $N$ and convergence toward the (111) gold sheet.}
\end{figure}
%
Hollow gold clusters can be created by wrapping a cut-out from a (111) gold 2D
sheet around a sphere while introducing 12 vertices of degree 5 to satisfy
Euler's theorem. Therefore, an infinitely large 2D gold sheet represents a
golden dual fullerene cage with an infinite sphere radius. As the cohesive
energy of the compact structures converges towards the bulk cohesive energy, the
cohesive energy of the 2D triangulated gold sheet should represent the infinite limit for the
dual golden fullerene structures. This is indeed the case and is depicted in
figure~\ref{fig:cohesiveenergies2} using a $N^{-1}$ scaling law analogous to the
one used for fullerenes.\autocite{Wirz_smallfullerenesgraphene_2015}
An interesting result was the difference between the cohesive energy of the bulk