Skip to content

Commit 63c7f93

Browse files
authored
fix rename adbackend to adtype (#60)
* fix rename `adbackend` to `adtype` * fix interface tests rename `adbackend` to `adtype`
1 parent efbc9c5 commit 63c7f93

File tree

10 files changed

+36
-36
lines changed

10 files changed

+36
-36
lines changed

README.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -43,7 +43,7 @@ function LogDensityProblems.capabilities(::Type{<:NormalLogNormal})
4343
end
4444
```
4545

46-
Since the support of `x` is constrained to be positive, and VI is best done in the unconstrained Euclidean space, we need to use a *bijector* to transform `x` into unconstrained Euclidean space. We will use the [`Bijectors.jl`](https://github.com/TuringLang/Bijectors.jl) package for this purpose.
46+
Since the support of `x` is constrained to be positive and VI is best done in the unconstrained Euclidean space, we need to use a *bijector* to transform `x` into unconstrained Euclidean space. We will use the [`Bijectors.jl`](https://github.com/TuringLang/Bijectors.jl) package for this purpose.
4747
This corresponds to the automatic differentiation variational inference (ADVI) formulation[^KTRGB2017].
4848
```julia
4949
using Bijectors
@@ -99,7 +99,7 @@ q, stats, _ = AdvancedVI.optimize(
9999
elbo,
100100
q_transformed,
101101
max_iter;
102-
adbackend = ADTypes.AutoForwardDiff(),
102+
adtype = ADTypes.AutoForwardDiff(),
103103
optimizer = Optimisers.Adam(1e-3)
104104
)
105105

docs/src/elbo/repgradelbo.md

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -189,7 +189,7 @@ _, stats_cfe, _ = AdvancedVI.optimize(
189189
q0_trans,
190190
max_iter;
191191
show_progress = false,
192-
adbackend = AutoForwardDiff(),
192+
adtype = AutoForwardDiff(),
193193
optimizer = Optimisers.Adam(1e-3)
194194
);
195195
@@ -199,7 +199,7 @@ _, stats_stl, _ = AdvancedVI.optimize(
199199
q0_trans,
200200
max_iter;
201201
show_progress = false,
202-
adbackend = AutoForwardDiff(),
202+
adtype = AutoForwardDiff(),
203203
optimizer = Optimisers.Adam(1e-3)
204204
);
205205
@@ -264,7 +264,7 @@ _, stats_qmc, _ = AdvancedVI.optimize(
264264
q0_trans,
265265
max_iter;
266266
show_progress = false,
267-
adbackend = AutoForwardDiff(),
267+
adtype = AutoForwardDiff(),
268268
optimizer = Optimisers.Adam(1e-3)
269269
);
270270

docs/src/examples.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -102,7 +102,7 @@ q_trans, stats, _ = AdvancedVI.optimize(
102102
q0_trans,
103103
n_max_iter;
104104
show_progress = false,
105-
adbackend = AutoForwardDiff(),
105+
adtype = AutoForwardDiff(),
106106
optimizer = Optimisers.Adam(1e-3)
107107
);
108108
nothing

src/AdvancedVI.jl

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -93,14 +93,14 @@ export estimate_objective
9393

9494

9595
"""
96-
estimate_gradient!(rng, obj, adbackend, out, prob, λ, restructure, obj_state)
96+
estimate_gradient!(rng, obj, adtype, out, prob, λ, restructure, obj_state)
9797
9898
Estimate (possibly stochastic) gradients of the variational objective `obj` targeting `prob` with respect to the variational parameters `λ`
9999
100100
# Arguments
101101
- `rng::Random.AbstractRNG`: Random number generator.
102102
- `obj::AbstractVariationalObjective`: Variational objective.
103-
- `adbackend::ADTypes.AbstractADType`: Automatic differentiation backend.
103+
- `adtype::ADTypes.AbstractADType`: Automatic differentiation backend.
104104
- `out::DiffResults.MutableDiffResult`: Buffer containing the objective value and gradient estimates.
105105
- `prob`: The target log-joint likelihood implementing the `LogDensityProblem` interface.
106106
- `λ`: Variational parameters to evaluate the gradient on.

src/objectives/elbo/repgradelbo.jl

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -95,10 +95,10 @@ estimate_objective(obj::RepGradELBO, q, prob; n_samples::Int = obj.n_samples) =
9595
estimate_objective(Random.default_rng(), obj, q, prob; n_samples)
9696

9797
function estimate_gradient!(
98-
rng ::Random.AbstractRNG,
99-
obj ::RepGradELBO,
100-
adbackend::ADTypes.AbstractADType,
101-
out ::DiffResults.MutableDiffResult,
98+
rng ::Random.AbstractRNG,
99+
obj ::RepGradELBO,
100+
adtype::ADTypes.AbstractADType,
101+
out ::DiffResults.MutableDiffResult,
102102
prob,
103103
λ,
104104
restructure,
@@ -112,7 +112,7 @@ function estimate_gradient!(
112112
elbo = energy + entropy
113113
-elbo
114114
end
115-
value_and_gradient!(adbackend, f, λ, out)
115+
value_and_gradient!(adtype, f, λ, out)
116116

117117
nelbo = DiffResults.value(out)
118118
stat = (elbo=-nelbo,)

src/optimize.jl

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -16,7 +16,7 @@ The variational approximation can be constructed by passing the variational para
1616
- `objargs...`: Arguments to be passed to `objective`.
1717
1818
# Keyword Arguments
19-
- `adbackend::ADtypes.AbstractADType`: Automatic differentiation backend.
19+
- `adtype::ADtypes.AbstractADType`: Automatic differentiation backend.
2020
- `optimizer::Optimisers.AbstractRule`: Optimizer used for inference. (Default: `Adam`.)
2121
- `rng::AbstractRNG`: Random number generator. (Default: `Random.default_rng()`.)
2222
- `show_progress::Bool`: Whether to show the progress bar. (Default: `true`.)
@@ -54,7 +54,7 @@ function optimize(
5454
params_init,
5555
max_iter ::Int,
5656
objargs...;
57-
adbackend ::ADTypes.AbstractADType,
57+
adtype ::ADTypes.AbstractADType,
5858
optimizer ::Optimisers.AbstractRule = Optimisers.Adam(),
5959
show_progress::Bool = true,
6060
state_init ::NamedTuple = NamedTuple(),
@@ -77,7 +77,7 @@ function optimize(
7777
stat = (iteration=t,)
7878

7979
grad_buf, obj_st, stat′ = estimate_gradient!(
80-
rng, objective, adbackend, grad_buf, problem,
80+
rng, objective, adtype, grad_buf, problem,
8181
λ, restructure, obj_st, objargs...
8282
)
8383
stat = merge(stat, stat′)

test/inference/repgradelbo_distributionsad.jl

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -14,7 +14,7 @@ using Test
1414
:RepGradELBOClosedFormEntropy => RepGradELBO(n_montecarlo),
1515
:RepGradELBOStickingTheLanding => RepGradELBO(n_montecarlo, entropy = StickingTheLandingEntropy()),
1616
),
17-
(adbackname, adbackend) Dict(
17+
(adbackname, adtype) Dict(
1818
:ForwarDiff => AutoForwardDiff(),
1919
#:ReverseDiff => AutoReverseDiff(),
2020
:Zygote => AutoZygote(),
@@ -39,7 +39,7 @@ using Test
3939
rng, model, objective, q0, T;
4040
optimizer = Optimisers.Adam(realtype(η)),
4141
show_progress = PROGRESS,
42-
adbackend = adbackend,
42+
adtype = adtype,
4343
)
4444

4545
μ = mean(q)
@@ -57,7 +57,7 @@ using Test
5757
rng, model, objective, q0, T;
5858
optimizer = Optimisers.Adam(realtype(η)),
5959
show_progress = PROGRESS,
60-
adbackend = adbackend,
60+
adtype = adtype,
6161
)
6262
μ = mean(q)
6363
L = sqrt(cov(q))
@@ -67,7 +67,7 @@ using Test
6767
rng_repl, model, objective, q0, T;
6868
optimizer = Optimisers.Adam(realtype(η)),
6969
show_progress = PROGRESS,
70-
adbackend = adbackend,
70+
adtype = adtype,
7171
)
7272
μ_repl = mean(q)
7373
L_repl = sqrt(cov(q))

test/inference/repgradelbo_locationscale.jl

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -15,7 +15,7 @@ using Test
1515
:RepGradELBOClosedFormEntropy => RepGradELBO(n_montecarlo),
1616
:RepGradELBOStickingTheLanding => RepGradELBO(n_montecarlo, entropy = StickingTheLandingEntropy()),
1717
),
18-
(adbackname, adbackend) in Dict(
18+
(adbackname, adtype) in Dict(
1919
:ForwarDiff => AutoForwardDiff(),
2020
:ReverseDiff => AutoReverseDiff(),
2121
:Zygote => AutoZygote(),
@@ -43,7 +43,7 @@ using Test
4343
rng, model, objective, q0, T;
4444
optimizer = Optimisers.Adam(realtype(η)),
4545
show_progress = PROGRESS,
46-
adbackend = adbackend,
46+
adtype = adtype,
4747
)
4848

4949
μ = q.location
@@ -61,7 +61,7 @@ using Test
6161
rng, model, objective, q0, T;
6262
optimizer = Optimisers.Adam(realtype(η)),
6363
show_progress = PROGRESS,
64-
adbackend = adbackend,
64+
adtype = adtype,
6565
)
6666
μ = q.location
6767
L = q.scale
@@ -71,7 +71,7 @@ using Test
7171
rng_repl, model, objective, q0, T;
7272
optimizer = Optimisers.Adam(realtype(η)),
7373
show_progress = PROGRESS,
74-
adbackend = adbackend,
74+
adtype = adtype,
7575
)
7676
μ_repl = q.location
7777
L_repl = q.scale

test/inference/repgradelbo_locationscale_bijectors.jl

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -14,7 +14,7 @@ using Test
1414
:RepGradELBOClosedFormEntropy => RepGradELBO(n_montecarlo),
1515
:RepGradELBOStickingTheLanding => RepGradELBO(n_montecarlo, entropy = StickingTheLandingEntropy()),
1616
),
17-
(adbackname, adbackend) in Dict(
17+
(adbackname, adtype) in Dict(
1818
:ForwarDiff => AutoForwardDiff(),
1919
:ReverseDiff => AutoReverseDiff(),
2020
#:Zygote => AutoZygote(),
@@ -48,7 +48,7 @@ using Test
4848
rng, model, objective, q0_z, T;
4949
optimizer = Optimisers.Adam(realtype(η)),
5050
show_progress = PROGRESS,
51-
adbackend = adbackend,
51+
adtype = adtype,
5252
)
5353

5454
μ = q.dist.location
@@ -66,7 +66,7 @@ using Test
6666
rng, model, objective, q0_z, T;
6767
optimizer = Optimisers.Adam(realtype(η)),
6868
show_progress = PROGRESS,
69-
adbackend = adbackend,
69+
adtype = adtype,
7070
)
7171
μ = q.dist.location
7272
L = q.dist.scale
@@ -76,7 +76,7 @@ using Test
7676
rng_repl, model, objective, q0_z, T;
7777
optimizer = Optimisers.Adam(realtype(η)),
7878
show_progress = PROGRESS,
79-
adbackend = adbackend,
79+
adtype = adtype,
8080
)
8181
μ_repl = q.dist.location
8282
L_repl = q.dist.scale

test/interface/optimize.jl

Lines changed: 8 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -14,15 +14,15 @@ using Test
1414
q0 = TuringDiagMvNormal(zeros(Float64, n_dims), ones(Float64, n_dims))
1515
obj = RepGradELBO(10)
1616

17-
adbackend = AutoForwardDiff()
17+
adtype = AutoForwardDiff()
1818
optimizer = Optimisers.Adam(1e-2)
1919

2020
rng = StableRNG(seed)
2121
q_ref, stats_ref, _ = optimize(
2222
rng, model, obj, q0, T;
2323
optimizer,
2424
show_progress = false,
25-
adbackend,
25+
adtype,
2626
)
2727
λ_ref, _ = Optimisers.destructure(q_ref)
2828

@@ -31,15 +31,15 @@ using Test
3131
model, obj, q0, T;
3232
optimizer,
3333
show_progress = false,
34-
adbackend,
34+
adtype,
3535
)
3636

3737
λ₀, re = Optimisers.destructure(q0)
3838
optimize(
3939
model, obj, re, λ₀, T;
4040
optimizer,
4141
show_progress = false,
42-
adbackend,
42+
adtype,
4343
)
4444
end
4545

@@ -51,7 +51,7 @@ using Test
5151
rng, model, obj, re, λ₀, T;
5252
optimizer,
5353
show_progress = false,
54-
adbackend,
54+
adtype,
5555
)
5656
@test λ == λ_ref
5757
@test stats == stats_ref
@@ -67,7 +67,7 @@ using Test
6767
_, stats, _ = optimize(
6868
rng, model, obj, q0, T;
6969
show_progress = false,
70-
adbackend,
70+
adtype,
7171
callback
7272
)
7373
@test [stat.test_value for stat stats] == test_values
@@ -83,15 +83,15 @@ using Test
8383
rng, model, obj, q0, T_first;
8484
optimizer,
8585
show_progress = false,
86-
adbackend
86+
adtype
8787
)
8888

8989
q, stats, _ = optimize(
9090
rng, model, obj, q_first, T_last;
9191
optimizer,
9292
show_progress = false,
9393
state_init = state,
94-
adbackend
94+
adtype
9595
)
9696
@test q == q_ref
9797
end

0 commit comments

Comments
 (0)