@@ -10,13 +10,7 @@ using Random: Random, Xoshiro
1010using Statistics: median
1111using Test: @test
1212
13- export ADResult, run_ad
14-
15- # This function needed to work around the fact that different backends can
16- # return different AbstractArrays for the gradient. See
17- # https://github.com/JuliaDiff/DifferentiationInterface.jl/issues/754 for more
18- # context.
19- _to_vec_f64 (x:: AbstractArray ) = x isa Vector{Float64} ? x : collect (Float64, x)
13+ export ADResult, run_ad, ADIncorrectException
2014
2115"""
2216 REFERENCE_ADTYPE
@@ -27,33 +21,50 @@ it's the default AD backend used in Turing.jl.
2721const REFERENCE_ADTYPE = AutoForwardDiff ()
2822
2923"""
30- ADResult
24+ ADIncorrectException{T<:Real}
25+
26+ Exception thrown when an AD backend returns an incorrect value or gradient.
27+
28+ The type parameter `T` is the numeric type of the value and gradient.
29+ """
30+ struct ADIncorrectException{T<: Real } <: Exception
31+ value_expected:: T
32+ value_actual:: T
33+ grad_expected:: Vector{T}
34+ grad_actual:: Vector{T}
35+ end
36+
37+ """
38+ ADResult{Tparams<:Real,Tresult<:Real}
3139
3240Data structure to store the results of the AD correctness test.
41+
42+ The type parameter `Tparams` is the numeric type of the parameters passed in;
43+ `Tresult` is the type of the value and the gradient.
3344"""
34- struct ADResult
45+ struct ADResult{Tparams <: Real ,Tresult <: Real }
3546 " The DynamicPPL model that was tested"
3647 model:: Model
3748 " The VarInfo that was used"
3849 varinfo:: AbstractVarInfo
3950 " The values at which the model was evaluated"
40- params:: Vector{<:Real }
51+ params:: Vector{Tparams }
4152 " The AD backend that was tested"
4253 adtype:: AbstractADType
4354 " The absolute tolerance for the value of logp"
44- value_atol:: Real
55+ value_atol:: Tresult
4556 " The absolute tolerance for the gradient of logp"
46- grad_atol:: Real
57+ grad_atol:: Tresult
4758 " The expected value of logp"
48- value_expected:: Union{Nothing,Float64 }
59+ value_expected:: Union{Nothing,Tresult }
4960 " The expected gradient of logp"
50- grad_expected:: Union{Nothing,Vector{Float64 }}
61+ grad_expected:: Union{Nothing,Vector{Tresult }}
5162 " The value of logp (calculated using `adtype`)"
52- value_actual:: Union{Nothing,Real }
63+ value_actual:: Union{Nothing,Tresult }
5364 " The gradient of logp (calculated using `adtype`)"
54- grad_actual:: Union{Nothing,Vector{Float64 }}
65+ grad_actual:: Union{Nothing,Vector{Tresult }}
5566 " If benchmarking was requested, the time taken by the AD backend to calculate the gradient of logp, divided by the time taken to evaluate logp itself"
56- time_vs_primal:: Union{Nothing,Float64 }
67+ time_vs_primal:: Union{Nothing,Tresult }
5768end
5869
5970"""
7283 verbose=true,
7384 )::ADResult
7485
86+ ### Description
87+
7588Test the correctness and/or benchmark the AD backend `adtype` for the model
7689`model`.
7790
7891Whether to test and benchmark is controlled by the `test` and `benchmark`
7992keyword arguments. By default, `test` is `true` and `benchmark` is `false`.
8093
81- Returns an [`ADResult`](@ref) object, which contains the results of the
82- test and/or benchmark.
83-
8494Note that to run AD successfully you will need to import the AD backend itself.
8595For example, to test with `AutoReverseDiff()` you will need to run `import
8696ReverseDiff`.
8797
98+ ### Arguments
99+
88100There are two positional arguments, which absolutely must be provided:
89101
901021. `model` - The model being tested.
@@ -146,14 +158,23 @@ Everything else is optional, and can be categorised into several groups:
146158
147159 By default, this function prints messages when it runs. To silence it, set
148160 `verbose=false`.
161+
162+ ### Returns / Throws
163+
164+ Returns an [`ADResult`](@ref) object, which contains the results of the
165+ test and/or benchmark.
166+
167+ If `test` is `true` and the AD backend returns an incorrect value or gradient, an
168+ `ADIncorrectException` is thrown. If a different error occurs, it will be
169+ thrown as-is.
149170"""
150171function run_ad (
151172 model:: Model ,
152173 adtype:: AbstractADType ;
153- test= true ,
154- benchmark= false ,
155- value_atol= 1e-6 ,
156- grad_atol= 1e-6 ,
174+ test:: Bool = true ,
175+ benchmark:: Bool = false ,
176+ value_atol:: Real = 1e-6 ,
177+ grad_atol:: Real = 1e-6 ,
157178 linked:: Bool = true ,
158179 varinfo:: AbstractVarInfo = VarInfo (model),
159180 params:: Union{Nothing,Vector{<:Real}} = nothing ,
@@ -167,14 +188,14 @@ function run_ad(
167188 if isnothing (params)
168189 params = varinfo[:]
169190 end
170- params = map (identity, params)
191+ params = map (identity, params) # Concretise
171192
172193 verbose && @info " Running AD on $(model. f) with $(adtype) \n "
173194 verbose && println (" params : $(params) " )
174195 ldf = LogDensityFunction (model, varinfo; adtype= adtype)
175196
176197 value, grad = logdensity_and_gradient (ldf, params)
177- grad = _to_vec_f64 (grad)
198+ grad = collect (grad)
178199 verbose && println (" actual : $((value, grad)) " )
179200
180201 if test
@@ -186,10 +207,11 @@ function run_ad(
186207 expected_value_and_grad
187208 end
188209 verbose && println (" expected : $((value_true, grad_true)) " )
189- grad_true = _to_vec_f64 (grad_true)
190- # Then compare
191- @test isapprox (value, value_true; atol= value_atol)
192- @test isapprox (grad, grad_true; atol= grad_atol)
210+ grad_true = collect (grad_true)
211+
212+ exc () = throw (ADIncorrectException (value, value_true, grad, grad_true))
213+ isapprox (value, value_true; atol= value_atol) || exc ()
214+ isapprox (grad, grad_true; atol= grad_atol) || exc ()
193215 else
194216 value_true = nothing
195217 grad_true = nothing
0 commit comments