Skip to content

Commit 8fd6095

Browse files
committed
Replace Turing.Model -> DynamicPPL.Model
1 parent 8c80dfe commit 8fd6095

File tree

2 files changed

+5
-3
lines changed

2 files changed

+5
-3
lines changed

src/mcmc/Inference.jl

Lines changed: 4 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -767,13 +767,15 @@ julia> [first(t.θ.x) for t in transitions] # extract samples for `x`
767767
[-1.704630494695469]
768768
```
769769
"""
770-
function transitions_from_chain(model::Turing.Model, chain::MCMCChains.Chains; kwargs...)
770+
function transitions_from_chain(
771+
model::DynamicPPL.Model, chain::MCMCChains.Chains; kwargs...
772+
)
771773
return transitions_from_chain(Random.default_rng(), model, chain; kwargs...)
772774
end
773775

774776
function transitions_from_chain(
775777
rng::Random.AbstractRNG,
776-
model::Turing.Model,
778+
model::DynamicPPL.Model,
777779
chain::MCMCChains.Chains;
778780
sampler=DynamicPPL.SampleFromPrior(),
779781
)

test/mcmc/abstractmcmc.jl

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -18,7 +18,7 @@ using Test: @test, @test_throws, @testset
1818
using Turing
1919
using Turing.Inference: AdvancedHMC
2020

21-
function initialize_nuts(model::Turing.Model)
21+
function initialize_nuts(model::DynamicPPL.Model)
2222
# Create a log-density function with an implementation of the
2323
# gradient so we ensure that we're using the same AD backend as in Turing.
2424
f = LogDensityProblemsAD.ADgradient(DynamicPPL.LogDensityFunction(model))

0 commit comments

Comments
 (0)