@@ -37,18 +37,18 @@ rng = Random.default_rng()
37
37
Random.seed!(rng, 1234)
38
38
39
39
# Generate artificial data
40
- x1s = rand(rng, Float32, M) * 4.5f0;
41
- x2s = rand(rng, Float32, M) * 4.5f0;
40
+ x1s = rand(rng, M) * 4.5f0;
41
+ x2s = rand(rng, M) * 4.5f0;
42
42
xt1s = Array([[x1s[i] + 0.5f0; x2s[i] + 0.5f0] for i in 1:M])
43
- x1s = rand(rng, Float32, M) * 4.5f0;
44
- x2s = rand(rng, Float32, M) * 4.5f0;
43
+ x1s = rand(rng, M) * 4.5f0;
44
+ x2s = rand(rng, M) * 4.5f0;
45
45
append!(xt1s, Array([[x1s[i] - 5.0f0; x2s[i] - 5.0f0] for i in 1:M]))
46
46
47
- x1s = rand(rng, Float32, M) * 4.5f0;
48
- x2s = rand(rng, Float32, M) * 4.5f0;
47
+ x1s = rand(rng, M) * 4.5f0;
48
+ x2s = rand(rng, M) * 4.5f0;
49
49
xt0s = Array([[x1s[i] + 0.5f0; x2s[i] - 5.0f0] for i in 1:M])
50
- x1s = rand(rng, Float32, M) * 4.5f0;
51
- x2s = rand(rng, Float32, M) * 4.5f0;
50
+ x1s = rand(rng, M) * 4.5f0;
51
+ x2s = rand(rng, M) * 4.5f0;
52
52
append!(xt0s, Array([[x1s[i] - 5.0f0; x2s[i] + 0.5f0] for i in 1:M]))
53
53
54
54
# Store all the data for later
@@ -189,7 +189,7 @@ const nn = StatefulLuxLayer{true}(nn_initial, nothing, st)
189
189
parameters ~ MvNormal(zeros(nparameters), Diagonal(abs2.(sigma .* ones(nparameters))))
190
190
191
191
# Forward NN to make predictions
192
- preds = Lux.apply(nn, xs, vector_to_parameters(parameters, ps))
192
+ preds = Lux.apply(nn, xs, f64( vector_to_parameters(parameters, ps) ))
193
193
194
194
# Observe each prediction.
195
195
for i in eachindex(ts)
0 commit comments