Skip to content

Commit 24862bb

Browse files
committed
Fix BNN doc to work with Mooncake
1 parent 28fcc61 commit 24862bb

File tree

1 file changed

+9
-9
lines changed
  • tutorials/03-bayesian-neural-network

1 file changed

+9
-9
lines changed

tutorials/03-bayesian-neural-network/index.qmd

Lines changed: 9 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -37,18 +37,18 @@ rng = Random.default_rng()
3737
Random.seed!(rng, 1234)
3838
3939
# Generate artificial data
40-
x1s = rand(rng, Float32, M) * 4.5f0;
41-
x2s = rand(rng, Float32, M) * 4.5f0;
40+
x1s = rand(rng, M) * 4.5f0;
41+
x2s = rand(rng, M) * 4.5f0;
4242
xt1s = Array([[x1s[i] + 0.5f0; x2s[i] + 0.5f0] for i in 1:M])
43-
x1s = rand(rng, Float32, M) * 4.5f0;
44-
x2s = rand(rng, Float32, M) * 4.5f0;
43+
x1s = rand(rng, M) * 4.5f0;
44+
x2s = rand(rng, M) * 4.5f0;
4545
append!(xt1s, Array([[x1s[i] - 5.0f0; x2s[i] - 5.0f0] for i in 1:M]))
4646
47-
x1s = rand(rng, Float32, M) * 4.5f0;
48-
x2s = rand(rng, Float32, M) * 4.5f0;
47+
x1s = rand(rng, M) * 4.5f0;
48+
x2s = rand(rng, M) * 4.5f0;
4949
xt0s = Array([[x1s[i] + 0.5f0; x2s[i] - 5.0f0] for i in 1:M])
50-
x1s = rand(rng, Float32, M) * 4.5f0;
51-
x2s = rand(rng, Float32, M) * 4.5f0;
50+
x1s = rand(rng, M) * 4.5f0;
51+
x2s = rand(rng, M) * 4.5f0;
5252
append!(xt0s, Array([[x1s[i] - 5.0f0; x2s[i] + 0.5f0] for i in 1:M]))
5353
5454
# Store all the data for later
@@ -189,7 +189,7 @@ const nn = StatefulLuxLayer{true}(nn_initial, nothing, st)
189189
parameters ~ MvNormal(zeros(nparameters), Diagonal(abs2.(sigma .* ones(nparameters))))
190190
191191
# Forward NN to make predictions
192-
preds = Lux.apply(nn, xs, vector_to_parameters(parameters, ps))
192+
preds = Lux.apply(nn, xs, f64(vector_to_parameters(parameters, ps)))
193193
194194
# Observe each prediction.
195195
for i in eachindex(ts)

0 commit comments

Comments
 (0)