Skip to content

Commit 1b49a42

Browse files
Add files via upload
1 parent 387dd05 commit 1b49a42

File tree

1 file changed

+240
-0
lines changed

1 file changed

+240
-0
lines changed

pandas.ipynb

+240
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,240 @@
1+
{
2+
"cells": [
3+
{
4+
"cell_type": "code",
5+
"execution_count": 1,
6+
"metadata": {},
7+
"outputs": [
8+
{
9+
"name": "stdout",
10+
"output_type": "stream",
11+
"text": [
12+
" country capital area population\n",
13+
"0 Brazil Brasilia 8.516 200.40\n",
14+
"1 Russia Moscow 17.100 143.50\n",
15+
"2 India New Dehli 3.286 1252.00\n",
16+
"3 China Beijing 9.597 1357.00\n",
17+
"4 South Africa Pretoria 1.221 52.98\n"
18+
]
19+
}
20+
],
21+
"source": [
22+
"dict = {\"country\": [\"Brazil\", \"Russia\", \"India\", \"China\", \"South Africa\"],\n",
23+
" \"capital\": [\"Brasilia\", \"Moscow\", \"New Dehli\", \"Beijing\", \"Pretoria\"],\n",
24+
" \"area\": [8.516, 17.10, 3.286, 9.597, 1.221],\n",
25+
" \"population\": [200.4, 143.5, 1252, 1357, 52.98] }\n",
26+
"\n",
27+
"import pandas as pd\n",
28+
"brics = pd.DataFrame(dict)\n",
29+
"print(brics)"
30+
]
31+
},
32+
{
33+
"cell_type": "code",
34+
"execution_count": 7,
35+
"metadata": {},
36+
"outputs": [
37+
{
38+
"name": "stdout",
39+
"output_type": "stream",
40+
"text": [
41+
" country capital area population\n",
42+
"v Brazil Brasilia 8.516 200.40\n",
43+
"i Russia Moscow 17.100 143.50\n",
44+
"s India New Dehli 3.286 1252.00\n",
45+
"h China Beijing 9.597 1357.00\n",
46+
"a South Africa Pretoria 1.221 52.98\n",
47+
"\n",
48+
" Unnamed: 0 cars_per_cap country drives_right\n",
49+
"0 US 809 United States True\n",
50+
"1 AUS 731 Australia False\n",
51+
"2 JAP 588 Japan False\n",
52+
"3 IN 18 India False\n",
53+
"4 RU 200 Russia True\n",
54+
"5 MOR 70 Morocco True\n",
55+
"6 EG 45 Egypt True\n"
56+
]
57+
}
58+
],
59+
"source": [
60+
"import pandas as pd\n",
61+
"brics.index = [\"v\",\"i\",\"s\",\"h\",\"a\"]\n",
62+
"print(brics)\n",
63+
"print()\n",
64+
"\n",
65+
"\n",
66+
"#bost = pd.read_csv('C://Users//Tushar Raj Shrma//Desktop//cars.csv')\n",
67+
"# both are working\n",
68+
"by = pd.read_csv('C:\\\\Users\\\\Tushar Raj Shrma\\\\Desktop\\\\cars.csv')\n",
69+
"print(by)"
70+
]
71+
},
72+
{
73+
"cell_type": "code",
74+
"execution_count": 28,
75+
"metadata": {},
76+
"outputs": [
77+
{
78+
"name": "stdout",
79+
"output_type": "stream",
80+
"text": [
81+
" student add father\n",
82+
"0 ram v 77\n",
83+
"1 shyam j 27\n",
84+
"2 vansh o 56\n",
85+
"3 joker e 99 \n",
86+
"\n",
87+
"\n",
88+
" student add father\n",
89+
"A ram v 77\n",
90+
"L shyam j 27\n",
91+
"E vansh o 56\n",
92+
"X joker e 99\n",
93+
"\n",
94+
"A 77\n",
95+
"L 27\n",
96+
"E 56\n",
97+
"X 99\n",
98+
"Name: father, dtype: int64\n",
99+
"\n",
100+
" father student\n",
101+
"A 77 ram\n",
102+
"L 27 shyam\n",
103+
"E 56 vansh\n",
104+
"X 99 joker\n",
105+
"\n",
106+
"\n",
107+
" student add father\n",
108+
"L shyam j 27\n",
109+
"E vansh o 56\n",
110+
"X joker e 99\n",
111+
"\n",
112+
"student vansh\n",
113+
"add o\n",
114+
"father 56\n",
115+
"Name: E, dtype: object\n",
116+
"\n"
117+
]
118+
},
119+
{
120+
"ename": "KeyError",
121+
"evalue": "\"None of [Index(['ram', 'joker'], dtype='object')] are in the [index]\"",
122+
"output_type": "error",
123+
"traceback": [
124+
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
125+
"\u001b[1;31mKeyError\u001b[0m Traceback (most recent call last)",
126+
"\u001b[1;32m<ipython-input-28-22b39840783a>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m\u001b[0m\n\u001b[0;32m 21\u001b[0m \u001b[0mprint\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 22\u001b[0m \u001b[1;31m#print(cars.loc[['AUS', 'EG']])\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 23\u001b[1;33m \u001b[0mprint\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mhasi\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mloc\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m'ram'\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;34m'joker'\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m",
127+
"\u001b[1;32m~\\Anaconda3\\lib\\site-packages\\pandas\\core\\indexing.py\u001b[0m in \u001b[0;36m__getitem__\u001b[1;34m(self, key)\u001b[0m\n\u001b[0;32m 1498\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1499\u001b[0m \u001b[0mmaybe_callable\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mcom\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mapply_if_callable\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mobj\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 1500\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_getitem_axis\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mmaybe_callable\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0maxis\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0maxis\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 1501\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1502\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0m_is_scalar_access\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mkey\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
128+
"\u001b[1;32m~\\Anaconda3\\lib\\site-packages\\pandas\\core\\indexing.py\u001b[0m in \u001b[0;36m_getitem_axis\u001b[1;34m(self, key, axis)\u001b[0m\n\u001b[0;32m 1900\u001b[0m \u001b[1;32mraise\u001b[0m \u001b[0mValueError\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m'Cannot index with multidimensional key'\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1901\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 1902\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_getitem_iterable\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0maxis\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0maxis\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 1903\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1904\u001b[0m \u001b[1;31m# nested tuple slicing\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
129+
"\u001b[1;32m~\\Anaconda3\\lib\\site-packages\\pandas\\core\\indexing.py\u001b[0m in \u001b[0;36m_getitem_iterable\u001b[1;34m(self, key, axis)\u001b[0m\n\u001b[0;32m 1203\u001b[0m \u001b[1;31m# A collection of keys\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1204\u001b[0m keyarr, indexer = self._get_listlike_indexer(key, axis,\n\u001b[1;32m-> 1205\u001b[1;33m raise_missing=False)\n\u001b[0m\u001b[0;32m 1206\u001b[0m return self.obj._reindex_with_indexers({axis: [keyarr, indexer]},\n\u001b[0;32m 1207\u001b[0m copy=True, allow_dups=True)\n",
130+
"\u001b[1;32m~\\Anaconda3\\lib\\site-packages\\pandas\\core\\indexing.py\u001b[0m in \u001b[0;36m_get_listlike_indexer\u001b[1;34m(self, key, axis, raise_missing)\u001b[0m\n\u001b[0;32m 1159\u001b[0m self._validate_read_indexer(keyarr, indexer,\n\u001b[0;32m 1160\u001b[0m \u001b[0mo\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_get_axis_number\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0maxis\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 1161\u001b[1;33m raise_missing=raise_missing)\n\u001b[0m\u001b[0;32m 1162\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0mkeyarr\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mindexer\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1163\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n",
131+
"\u001b[1;32m~\\Anaconda3\\lib\\site-packages\\pandas\\core\\indexing.py\u001b[0m in \u001b[0;36m_validate_read_indexer\u001b[1;34m(self, key, indexer, axis, raise_missing)\u001b[0m\n\u001b[0;32m 1244\u001b[0m raise KeyError(\n\u001b[0;32m 1245\u001b[0m u\"None of [{key}] are in the [{axis}]\".format(\n\u001b[1;32m-> 1246\u001b[1;33m key=key, axis=self.obj._get_axis_name(axis)))\n\u001b[0m\u001b[0;32m 1247\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1248\u001b[0m \u001b[1;31m# We (temporarily) allow for some missing keys with .loc, except in\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
132+
"\u001b[1;31mKeyError\u001b[0m: \"None of [Index(['ram', 'joker'], dtype='object')] are in the [index]\""
133+
]
134+
}
135+
],
136+
"source": [
137+
"rule = {\"student\":[\"ram\",\"shyam\",\"vansh\",\"joker\"],\"add\":[\"v\",\"j\",\"o\",\"e\"],\"father\":[77,27,56,99]}\n",
138+
"import pandas as pd\n",
139+
"hasi = pd.DataFrame(rule)\n",
140+
"#in DataFrame (D and F must be in capital letter)\n",
141+
"print(hasi,\"\\n\")\n",
142+
"print()\n",
143+
"hasi.index = [\"A\",\"L\",\"E\",\"X\"]\n",
144+
"print(hasi)\n",
145+
"#hasi = pd.DataFrame(rule,index_col = 1)\n",
146+
"#print(hasi)\n",
147+
"print()\n",
148+
"\n",
149+
"print(hasi[\"father\"])\n",
150+
"print()\n",
151+
"print(hasi[[\"father\", \"student\"]])\n",
152+
"print()\n",
153+
"print()\n",
154+
"print(hasi[1:5])\n",
155+
"print()\n",
156+
"print(hasi.iloc[2]) # doubt\n",
157+
"print()\n",
158+
"#print(cars.loc[['AUS', 'EG']])\n",
159+
"print(hasi.loc[['ram','joker']]) # doubt"
160+
]
161+
},
162+
{
163+
"cell_type": "code",
164+
"execution_count": null,
165+
"metadata": {},
166+
"outputs": [],
167+
"source": []
168+
},
169+
{
170+
"cell_type": "code",
171+
"execution_count": null,
172+
"metadata": {},
173+
"outputs": [],
174+
"source": []
175+
},
176+
{
177+
"cell_type": "code",
178+
"execution_count": null,
179+
"metadata": {},
180+
"outputs": [],
181+
"source": []
182+
},
183+
{
184+
"cell_type": "code",
185+
"execution_count": null,
186+
"metadata": {},
187+
"outputs": [],
188+
"source": []
189+
},
190+
{
191+
"cell_type": "code",
192+
"execution_count": null,
193+
"metadata": {},
194+
"outputs": [],
195+
"source": []
196+
},
197+
{
198+
"cell_type": "code",
199+
"execution_count": null,
200+
"metadata": {},
201+
"outputs": [],
202+
"source": []
203+
},
204+
{
205+
"cell_type": "code",
206+
"execution_count": null,
207+
"metadata": {},
208+
"outputs": [],
209+
"source": []
210+
},
211+
{
212+
"cell_type": "code",
213+
"execution_count": null,
214+
"metadata": {},
215+
"outputs": [],
216+
"source": []
217+
}
218+
],
219+
"metadata": {
220+
"kernelspec": {
221+
"display_name": "Python 3",
222+
"language": "python",
223+
"name": "python3"
224+
},
225+
"language_info": {
226+
"codemirror_mode": {
227+
"name": "ipython",
228+
"version": 3
229+
},
230+
"file_extension": ".py",
231+
"mimetype": "text/x-python",
232+
"name": "python",
233+
"nbconvert_exporter": "python",
234+
"pygments_lexer": "ipython3",
235+
"version": "3.7.3"
236+
}
237+
},
238+
"nbformat": 4,
239+
"nbformat_minor": 2
240+
}

0 commit comments

Comments
 (0)