-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_color_bar_segmenter.py
46 lines (42 loc) · 1.93 KB
/
train_color_bar_segmenter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import os
import argparse
from pathlib import Path
from pprint import pprint
from src.utils.training_config import TrainingConfig
from src.utils.color_bar_model_trainer import ColorBarModelTrainer
from src.utils.common_utils import log
from src.utils.bounding_box_utils import draw_result_bounding_boxes
import shutil
from src.utils.json_utils import to_json
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Train color bar segmentation model.')
parser.add_argument('-c', '--config', dest='config', type=str,
default='fixtures/test_seg_config.json',
help='Path to training config')
args = parser.parse_args()
model_trainer = ColorBarModelTrainer()
model_trainer.init_system(args.config)
log('===Training segmentation model===')
model_trainer.train_model()
log('===Validation Evaluation===')
model_trainer.validation_evaluation()
validation_incorrect = model_trainer.get_validation_incorrect_results_as_csv()
log(f"Validation Incorrect Results{validation_incorrect}")
log('===Testing model===')
model_trainer.offline_test()
log('===Writing results===')
pprint(model_trainer.get_test_results())
model_trainer.write_test_results()
# Draw bounding boxes on test images for inspection
test_preds = model_trainer.get_test_set_predictions()
output_path = model_trainer.config.log_dir / 'predictions'
if output_path.exists():
shutil.rmtree(str(output_path))
output_path.mkdir()
resize_dims = (model_trainer.config.max_dimension, model_trainer.config.max_dimension)
draw_result_bounding_boxes(test_preds['img_paths'], output_path, resize_dims, test_preds['predicted_boxes'], test_preds['target_boxes'])
# Store info about predicted bounding boxes and scores to a json file for inspection
predict_json_path = model_trainer.config.log_dir / 'predictions.json'
if Path.exists(predict_json_path):
predict_json_path.unlink()
to_json(test_preds, predict_json_path)