@@ -63,7 +63,7 @@ Dynamic tables contain a datetime column that allows NEMOSIS to filter their con
63
63
64
64
To learn more about each dynamic table visit the [ wiki] ( https://github.com/UNSW-CEEM/NEMOSIS/wiki ) .
65
65
66
- You can view the static tables available by printing the NEMOSIS default settings.
66
+ You can view the dynamic tables available by printing the NEMOSIS default settings.
67
67
68
68
``` python
69
69
from nemosis import defaults
@@ -108,8 +108,8 @@ To return only a subset of a particular table's columns, use the `select_columns
108
108
``` python
109
109
from nemosis import dynamic_data_compiler
110
110
111
- dynamic_data_compiler(start_time, end_time, table, raw_data_cache,
112
- select_columns = [' REGIONID' , ' SETTLEMENTDATE' , ' RRP' ])
111
+ price_data = dynamic_data_compiler(start_time, end_time, table, raw_data_cache,
112
+ select_columns = [' REGIONID' , ' SETTLEMENTDATE' , ' RRP' ])
113
113
```
114
114
115
115
To see what columns a table has, you can inspect NEMOSIS' defaults.
@@ -128,15 +128,15 @@ In the example below, the table will be filtered to only return rows where `REGI
128
128
``` python
129
129
from nemosis import dynamic_data_compiler
130
130
131
- dynamic_data_compiler(start_time, end_time, table, raw_data_cache, filter_cols = [' REGIONID' ], filter_values = ([' SA1' ],))
131
+ price_data = dynamic_data_compiler(start_time, end_time, table, raw_data_cache, filter_cols = [' REGIONID' ], filter_values = ([' SA1' ],))
132
132
```
133
133
134
134
Several filters can be applied simultaneously. A common filter is to extract pricing data excluding any physical intervention dispatch runs (` INTERVENTION == 0 ` is the appropriate filter, see [ here] ( https://github.com/UNSW-CEEM/NEMOSIS/wiki/Column-Summary#intervention ) ). Below is an example of filtering to get data for Gladstone Unit 1 and Hornsdale Wind Farm 2 excluding any physical dispatch runs:
135
135
136
136
``` python
137
137
from nemosis import dynamic_data_compiler
138
138
139
- dynamic_data_compiler(start_time, end_time, ' DISPATCHLOAD' , raw_data_cache, filter_cols = [' DUID' , ' INTERVENTION' ], filter_values = ([' GSTONE1' , ' HDWF2' ], [0 ]))
139
+ unit_dispatch_data = dynamic_data_compiler(start_time, end_time, ' DISPATCHLOAD' , raw_data_cache, filter_cols = [' DUID' , ' INTERVENTION' ], filter_values = ([' GSTONE1' , ' HDWF2' ], [0 ]))
140
140
```
141
141
142
142
###### Caching options
@@ -170,7 +170,7 @@ The example below downloads parquet data into the cache.
170
170
``` python
171
171
from nemosis import cache_compiler
172
172
173
- price_data = cache_compiler(start_time, end_time, table, raw_data_cache, fformat = ' parquet' )
173
+ cache_compiler(start_time, end_time, table, raw_data_cache, fformat = ' parquet' )
174
174
```
175
175
176
176
### Data from static tables
0 commit comments