Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

PoC: Async Message Processing with WebSocket Communication #15

Open
VCauthon opened this issue Dec 9, 2024 · 0 comments
Open

PoC: Async Message Processing with WebSocket Communication #15

VCauthon opened this issue Dec 9, 2024 · 0 comments

Comments

@VCauthon
Copy link
Owner

VCauthon commented Dec 9, 2024

I'll create a simple demonstration project to understand asynchronous messaging with AWS.

Required AWS Resources:

  • API Gateway (WebSocket API)
  • SNS Topic (for message processing)
  • SQS Queue (for responses)
  • DynamoDB (to track connections)
  • Lambda functions

Basic Flow:

  1. Client connects via WebSocket
  2. Client sends message
  3. System processes message asynchronously
  4. System sends response back through WebSocket
# connection_handler.py
import boto3
import os
import json

dynamodb = boto3.client('dynamodb')
CONNECTIONS_TABLE = os.environ['CONNECTIONS_TABLE']

def handle_connect(event, context):
    connection_id = event['requestContext']['connectionId']
    
    # Store connection ID
    dynamodb.put_item(
        TableName=CONNECTIONS_TABLE,
        Item={
            'connectionId': {'S': connection_id}
        }
    )
    
    return {'statusCode': 200}

# message_handler.py
import boto3
import json

sns = boto3.client('sns')
TOPIC_ARN = os.environ['TOPIC_ARN']

def handle_message(event, context):
    connection_id = event['requestContext']['connectionId']
    body = json.loads(event['body'])
    
    # Publish message to SNS
    message = {
        'connectionId': connection_id,
        'message': body['message']
    }
    
    sns.publish(
        TopicArn=TOPIC_ARN,
        Message=json.dumps(message)
    )
    
    return {'statusCode': 200}

# response_handler.py
import boto3
import json
import os

api_gateway = boto3.client('apigatewaymanagementapi')
sqs = boto3.client('sqs')
QUEUE_URL = os.environ['QUEUE_URL']

def process_responses(event, context):
    for record in event['Records']:
        message = json.loads(record['body'])
        connection_id = message['connectionId']
        
        # Send response back through WebSocket
        api_gateway.post_to_connection(
            ConnectionId=connection_id,
            Data=json.dumps({
                'message': message['response']
            })
        )

Key Implementation Steps:

  1. Set up WebSocket API in API Gateway
  2. Create DynamoDB table for connection tracking
  3. Set up SNS topic and SQS queue
  4. Create Lambda functions for handling:
    • WebSocket connections
    • Incoming messages
    • Processing responses
  5. Configure IAM permissions
  6. Implement client-side WebSocket handling

The key pattern here is:

  • Asynchronous message processing through SNS/SQS
  • WebSocket for real-time responses
  • Connection tracking in DynamoDB

This creates a foundation for understanding the more complex chatbot implementation. Would you like me to elaborate on any part?

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant