|
| 1 | +/* |
| 2 | +Define a Quadratic class |
| 3 | +new Quadratic(a, b, c) to create a quadratic |
| 4 | +in the form ax^2 + bx + c |
| 5 | +*/ |
| 6 | +class Quadratic { |
| 7 | + constructor(a, b, c) { |
| 8 | + this.a = a; |
| 9 | + this.b = b; |
| 10 | + this.c = c; |
| 11 | + } |
| 12 | + |
| 13 | + //evaluate the quadratic expression at x |
| 14 | + evaluate(x) { |
| 15 | + return (this.a*Math.pow(x, 2)) + (this.b*x) + this.c |
| 16 | + } |
| 17 | + |
| 18 | + |
| 19 | + //we never have to print the quadratic to solve the problem, so this part is optional |
| 20 | + //still added it for debugging and progress check purposes |
| 21 | + toString() { |
| 22 | + let expression = ``; |
| 23 | + expression += `${this.a}x^2 ` |
| 24 | + if (this.b > 0) { |
| 25 | + expression += `+ ${this.b}x `; |
| 26 | + } else if (this.b < 0) { |
| 27 | + expression += ` ${this.b}x `; |
| 28 | + } |
| 29 | + |
| 30 | + if (this.c > 0) { |
| 31 | + expression += `+ ${this.c}`; |
| 32 | + } else if (this.c < 0) { |
| 33 | + expression += ` ${this.c}`; |
| 34 | + } |
| 35 | + |
| 36 | + return expression; |
| 37 | + } |
| 38 | +} |
| 39 | + |
| 40 | +// check if number n is prime |
| 41 | +function isPrime(n) { |
| 42 | + if (n < 2) { |
| 43 | + return null; |
| 44 | + } |
| 45 | + |
| 46 | + for (let i = 2; i < n; i++) { |
| 47 | + if (n % i === 0) { |
| 48 | + return false; |
| 49 | + } |
| 50 | + } |
| 51 | + |
| 52 | + return true; |
| 53 | +} |
| 54 | + |
| 55 | +// generate array of primes under n |
| 56 | +function genPrimes(n) { |
| 57 | + let primes = []; |
| 58 | + |
| 59 | + for (let i = 2; i <= n; i++) { |
| 60 | + if (isPrime(i)) { |
| 61 | + primes.push(i); |
| 62 | + } |
| 63 | + } |
| 64 | + |
| 65 | + return primes; |
| 66 | +} |
| 67 | + |
| 68 | +function solution() { |
| 69 | + let constantTerms = genPrimes(1000); //constant term has to be prime so that the value of the quadratic is a prime when evaluated at 0 |
| 70 | + |
| 71 | + //object to hold quadratic with longest prime number streak for consecutive input values starting at 0 |
| 72 | + //everytime we find a quadratic with a longer streak, we can update this object (line 89) |
| 73 | + let longestStreak = { |
| 74 | + quadratic: null, |
| 75 | + streakLength: 0 |
| 76 | + } |
| 77 | + |
| 78 | + |
| 79 | + for (let i = 0; i < constantTerms.length; i++) { |
| 80 | + for (let b = -1000; b < 1000; b++) { |
| 81 | + let quadratic = new Quadratic(1, b, constantTerms[i]); |
| 82 | + |
| 83 | + let streak = 0; |
| 84 | + |
| 85 | + while (isPrime(quadratic.evaluate(streak))) { //while value of polynomial evaluated at n is prime, |
| 86 | + streak++ //n++ |
| 87 | + } |
| 88 | + |
| 89 | + if (streak > longestStreak.streakLength) { |
| 90 | + longestStreak.quadratic = quadratic; |
| 91 | + longestStreak.streakLength = streak; |
| 92 | + console.log(`Just checked ${quadratic.toString()}, streak length of ${streak}`); //progress check, print the quadratic everytime one with the longest prime number streak so far is found |
| 93 | + } |
| 94 | + } |
| 95 | + } |
| 96 | + |
| 97 | + |
| 98 | + //log the product of the coefficient of the linear term and the constant term (the answer that the question's asking for) |
| 99 | + console.log(longestStreak.quadratic.b * longestStreak.quadratic.c); |
| 100 | +} |
| 101 | + |
| 102 | +solution(); |
0 commit comments