forked from Oneflow-Inc/OneFlow-Benchmark
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfig.py
106 lines (86 loc) · 4.58 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
"""
Copyright 2020 The OneFlow Authors. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import argparse
from datetime import datetime
def str_list(x):
return x.split(',')
def int_list(x):
return list(map(int, x.split(',')))
def float_list(x):
return list(map(float, x.split(',')))
def str2bool(v):
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Unsupported value encountered.')
def get_parser(parser=None):
parser = argparse.ArgumentParser(description="flags for bert")
parser.add_argument('--do_train', type=str2bool, nargs='?', const=True, help='train or not')
parser.add_argument('--do_eval', type=str2bool, nargs='?', const=True, help='eval or not')
# resouce
parser.add_argument("--model", type=str, default='BERT Pretrain')
parser.add_argument("--gpu_num_per_node", type=int, default=1)
parser.add_argument('--num_nodes', type=int, default=1,
help='node/machine number for training')
parser.add_argument('--node_ips', type=str_list, default=['192.168.1.13', '192.168.1.14'],
help='nodes ip list for training, devided by ",", length >= num_nodes')
parser.add_argument("--ctrl_port", type=int, default=50051, help='ctrl_port for multinode job')
# train
parser.add_argument("--learning_rate", type=float, default=1e-4, help="Learning rate")
parser.add_argument("--weight_decay_rate", type=float, default=0.01, help="weight decay rate")
parser.add_argument("--warmup_proportion", type=float, default=0.1)
parser.add_argument('--use_fp16', type=str2bool, nargs='?', default='False', const=True,
help='use use fp16 or not')
parser.add_argument('--use_xla', type=str2bool, nargs='?', const=True,
help='Whether to use use xla')
# log and resore/save
parser.add_argument("--loss_print_every_n_iter", type=int, default=10, required=False,
help="print loss every n iteration")
parser.add_argument("--model_save_every_n_iter", type=int, default=10000, required=False,
help="save model every n iteration",)
parser.add_argument("--model_save_dir", type=str,
default="./output/model_save-{}".format(str(datetime.now().strftime("%Y-%m-%d-%H:%M:%S"))),
required=False, help="model save directory")
parser.add_argument("--save_last_snapshot", type=str2bool, default=False, required=False,
help="save model snapshot for last iteration")
parser.add_argument("--model_load_dir", type=str, default=None, help="model load directory")
parser.add_argument("--log_dir", type=str, default="./output", help="log info save directory")
# bert backbone
parser.add_argument('--do_lower_case', type=str2bool, nargs='?', const=True, default='True')
parser.add_argument("--seq_length", type=int, default=512)
parser.add_argument("--max_predictions_per_seq", type=int, default=80)
parser.add_argument("--num_hidden_layers", type=int, default=24)
parser.add_argument("--num_attention_heads", type=int, default=16)
parser.add_argument("--max_position_embeddings", type=int, default=512)
parser.add_argument("--type_vocab_size", type=int, default=2)
parser.add_argument("--vocab_size", type=int, default=30522)
parser.add_argument("--attention_probs_dropout_prob", type=float, default=0.1)
parser.add_argument("--hidden_dropout_prob", type=float, default=0.1)
parser.add_argument("--hidden_size_per_head", type=int, default=64)
return parser
def print_args(args):
print("=".ljust(66, "="))
print("Running {}: num_gpu_per_node = {}, num_nodes = {}.".format(
args.model, args.gpu_num_per_node, args.num_nodes))
print("=".ljust(66, "="))
for arg in vars(args):
print("{} = {}".format(arg, getattr(args, arg)))
print("-".ljust(66, "-"))
print("Time stamp: {}".format(
str(datetime.now().strftime("%Y-%m-%d-%H:%M:%S"))))
if __name__ == '__main__':
parser = get_parser()
args = parser.parse_args()
print_args(args)