This repository was archived by the owner on Jan 30, 2025. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathsommelier-output.cc
663 lines (585 loc) · 24.2 KB
/
sommelier-output.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
// Copyright 2022 The ChromiumOS Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "sommelier.h" // NOLINT(build/include_directory)
#include "sommelier-transform.h" // NOLINT(build/include_directory)
#include <algorithm>
#include <assert.h>
#include <cstdint>
#include <stdlib.h>
#include <string.h>
#include <vector>
#include <wayland-client.h>
#include "aura-shell-client-protocol.h" // NOLINT(build/include_directory)
#include "xdg-output-unstable-v1-client-protocol.h" // NOLINT(build/include_directory)
#define MAX_OUTPUT_SCALE 2
#define INCH_IN_MM 25.4
// Legacy X11 applications use DPI to decide on their scale. This value is what
// the convention for a "normal" scale is. One way to verify the convention is
// to note the DPI of a typical monitor circa ~2005, i.e. 20" 1080p.
#define DEFACTO_DPI 96
double sl_output_aura_scale_factor_to_double(int scale_factor) {
// Aura scale factor is an enum that for all currently know values
// is a scale value multipled by 1000. For example, enum value for
// 1.25 scale factor is 1250.
return scale_factor / 1000.0;
}
int dpi_to_physical_mm(double dpi, int px) {
return px * (INCH_IN_MM / dpi);
}
void sl_output_apply_rotation(
int transform, int width, int height, int* out_width, int* out_height) {
switch (transform) {
case WL_OUTPUT_TRANSFORM_NORMAL:
case WL_OUTPUT_TRANSFORM_180:
case WL_OUTPUT_TRANSFORM_FLIPPED:
case WL_OUTPUT_TRANSFORM_FLIPPED_180:
*out_width = width;
*out_height = height;
break;
default:
*out_width = height;
*out_height = width;
break;
}
}
void sl_output_get_host_output_state(struct sl_host_output* host,
int* scale,
int* physical_width,
int* physical_height,
int* width,
int* height) {
// The user's chosen zoom level.
double current_scale =
sl_output_aura_scale_factor_to_double(host->current_scale);
// The scale applied to a screen at the default zoom. I.e. this value
// determines the meaning of "100%" zoom, and how zoom relates to the
// apparent resolution:
//
// apparent_res = native_res / device_scale_factor * current_scale
//
// e.g.: On a device with a DSF of 2.0, 80% zoom really means "apply 1.6x
// scale", and 50% zoom would give you an apparent resolution equal to the
// native one.
double device_scale_factor =
sl_output_aura_scale_factor_to_double(host->device_scale_factor);
// Optimistically, we will try to apply the scale that the user chose.
// Failing that, we will use the scale set for this wl_output.
double applied_scale = device_scale_factor * current_scale;
if (!host->ctx->aura_shell) {
applied_scale = host->scale_factor;
}
int target_dpi = DEFACTO_DPI;
if (host->ctx->xwayland) {
// For X11, we must fix the scale to be 1 (since X apps typically can't
// handle scaling). As a result, we adjust the resolution (based on the
// scale we want to apply and sommelier's configuration) and the physical
// dimensions (based on what DPI we want the applications to use). E.g.:
// - Device scale is 1.25x, with 1920x1080 resolution on a 295mm by 165mm
// screen.
// - User chosen zoom is 130%
// - Sommelier is scaled to 0.5 (a.k.a low density). Since ctx->scale also
// has the device scale, it will be 0.625 (i.e. 0.5 * 1.25).
// - We want the DPI to be 120 (i.e. 96 * 1.25)
// - Meaning 0.21 mm/px
// - We report resolution 738x415 (1920x1080 * 0.5 / 1.3)
// - We report dimensions 155mm by 87mm (738x415 * 0.21)
// This is mostly expected, another way of thinking about them is that zoom
// and scale modify the application's understanding of length:
// - Increasing the zoom makes lengths appear longer (i.e. fewer mm to work
// with over the same real length).
// - Scaling the screen does the inverse.
if (scale)
*scale = 1;
*width = host->width * host->ctx->scale / applied_scale;
*height = host->height * host->ctx->scale / applied_scale;
target_dpi = DEFACTO_DPI * device_scale_factor;
*physical_width = dpi_to_physical_mm(target_dpi, *width);
*physical_height = dpi_to_physical_mm(target_dpi, *height);
} else {
// For wayland, we directly apply the scale which combines the user's chosen
// preference (from aura) and the scale which this sommelier was configured
// for (i.e. based on ctx->scale, which comes from the env/cmd line).
//
// See above comment: ctx->scale already has the device_scale_factor in it,
// so this maths actually looks like:
//
// applied / ctx->scale
// = (current*DSF) / (config*DSF)
// = current / config
//
// E.g. if we configured sommelier to scale everything 0.5x, and the user
// has chosen 130% zoom, we are applying 2.6x scale factor.
int s = MIN(ceil(applied_scale / host->ctx->scale), MAX_OUTPUT_SCALE);
if (scale)
*scale = s;
*physical_width = host->physical_width;
*physical_height = host->physical_height;
*width = host->width * host->ctx->scale * s / applied_scale;
*height = host->height * host->ctx->scale * s / applied_scale;
target_dpi = (*width * INCH_IN_MM) / *physical_width;
}
if (host->ctx->dpi.size) {
int adjusted_dpi = *(reinterpret_cast<int*>(host->ctx->dpi.data));
// Choose the DPI bucket which is closest to the target DPI which we
// calculated above.
int* dpi;
sl_array_for_each(dpi, &host->ctx->dpi) {
if (abs(*dpi - target_dpi) < abs(adjusted_dpi - target_dpi))
adjusted_dpi = *dpi;
}
*physical_width = dpi_to_physical_mm(adjusted_dpi, *width);
*physical_height = dpi_to_physical_mm(adjusted_dpi, *height);
}
}
void sl_output_get_logical_dimensions(struct sl_host_output* host,
bool rotated,
int32_t* width,
int32_t* height) {
if (rotated) {
// Pass the dimensions as is (it could be rotated)
*width = host->logical_width;
*height = host->logical_height;
} else {
// The transform here indicates how a window image will be
// rotated when composited. The incoming surface from the
// application will NOT have its dimensions rotated.
// For this reason, in order to calculate the scale factors
// for direct scale, we will need the non rotated logical
// dimensions.
sl_output_apply_rotation(host->transform, host->logical_width,
host->logical_height, width, height);
}
}
void sl_output_init_dimensions_direct(struct sl_host_output* host,
int* out_scale,
int* out_physical_width,
int* out_physical_height,
int* out_width,
int* out_height) {
int32_t virtual_width = host->width;
int32_t virtual_height = host->height;
// This requires xdg_output_manager, it is assumed that it will be
// available and we will have an appropriate set of logical dimensions
// for this particular output.
assert(host->ctx->viewporter);
assert(host->ctx->xdg_output_manager);
// The virtual width/height is computed by this function here based
// on the physical width/height
sl_transform_output_dimensions(host->ctx, &virtual_width, &virtual_height);
host->virt_scale_x = static_cast<double>(virtual_width) / host->width;
host->virt_scale_y = static_cast<double>(virtual_height) / host->height;
*out_width = virtual_width;
*out_height = virtual_height;
// Force the scale to 1
//
// This is reported to the guest through the wl_output protocol.
// This value will signal by how much a compositor will upscale
// all buffers by (1 is no scale).
*out_scale = 1;
// The physical dimensions (in mm) are the same, regardless
// of the provided scale factor.
*out_physical_width = host->physical_width;
*out_physical_height = host->physical_height;
// Retrieve the logical dimensions
int32_t logical_width, logical_height;
sl_output_get_logical_dimensions(host, /*rotated=*/false, &logical_width,
&logical_height);
// We want to be able to transform from virtual to XDG logical
// coordinates
// Virt to XDG -> div
// XDG to Virt -> mul
host->xdg_scale_x =
static_cast<double>(virtual_width) / static_cast<double>(logical_width);
host->xdg_scale_y =
static_cast<double>(virtual_height) / static_cast<double>(logical_height);
if (host->internal) {
host->ctx->virt_scale_x = host->virt_scale_x;
host->ctx->virt_scale_y = host->virt_scale_y;
host->ctx->xdg_scale_x = host->xdg_scale_x;
host->ctx->xdg_scale_y = host->xdg_scale_y;
}
}
void sl_output_get_dimensions_original(struct sl_host_output* host,
int* out_scale,
int* out_physical_width,
int* out_physical_height,
int* out_width,
int* out_height) {
int scale;
int physical_width;
int physical_height;
int width;
int height;
sl_output_get_host_output_state(host, &scale, &physical_width,
&physical_height, &width, &height);
// Use density of internal display for all Xwayland outputs. X11 clients
// typically lack support for dynamically changing density so it's
// preferred to always use the density of the internal display.
if (host->ctx->xwayland) {
for (auto output : host->ctx->host_outputs) {
if (output->internal) {
int internal_width;
int internal_height;
sl_output_get_host_output_state(output, nullptr, &physical_width,
&physical_height, &internal_width,
&internal_height);
physical_width = (physical_width * width) / internal_width;
physical_height = (physical_height * height) / internal_height;
break;
}
}
}
*out_scale = scale;
*out_physical_width = physical_width;
*out_physical_height = physical_height;
*out_width = width;
*out_height = height;
}
// Recalculates the virt_x coordinates of outputs when an output is
// add/removed/changed.
void sl_output_update_output_x(struct sl_context* ctx) {
// Outputs are positioned in a line from left to right based off their x
// position.
int next_output_x = 0;
for (auto output : ctx->host_outputs) {
// Update the value and mark for sending.
if (output->virt_x != next_output_x) {
output->virt_x = next_output_x;
output->needs_update = true;
}
next_output_x += output->virt_rotated_width;
}
}
struct sl_host_output* sl_infer_output_for_host_position(struct sl_context* ctx,
int32_t host_x,
int32_t host_y) {
struct sl_host_output* closest = nullptr;
int32_t closest_distance = INT32_MAX;
// Return the output containing, or closest to, the query X/Y coordinates
// in host logical space. "Closest" considers Manhattan distance.
for (auto output : ctx->host_outputs) {
if (!closest) {
closest = output;
}
int32_t x_distance;
if (host_x < output->x) {
// Query point is left of the output
x_distance = output->x - host_x;
} else if (host_x < output->x + output->width) {
// Query point is inside the output (on X axis)
x_distance = 0;
} else {
// Query point is right of the output
x_distance = host_x - (output->x + output->width);
}
int32_t y_distance;
if (host_y < output->y) {
// Query point is above the output
y_distance = output->y - host_y;
} else if (host_y < output->y + output->height) {
// Query point is inside the output (on Y axis)
y_distance = 0;
} else {
// Query point is below the output
y_distance = host_y - (output->y + output->height);
}
if (x_distance + y_distance < closest_distance) {
closest = output;
closest_distance = x_distance + y_distance;
if (closest_distance == 0) {
break;
}
}
}
return closest;
}
struct sl_host_output* sl_infer_output_for_guest_position(
struct sl_context* ctx, int32_t virt_x, int32_t virt_y) {
struct sl_host_output* first = nullptr;
struct sl_host_output* last = nullptr;
// Return the output containing the query X coordinate (in virtual space).
// Since outputs are placed in a horizontal line in virtual space, we can
// ignore the Y coordinate entirely.
for (auto output : ctx->host_outputs) {
if (!first) {
first = output;
}
last = output;
if (virt_x >= output->virt_x && virt_x < output->virt_x + output->width) {
return output;
}
}
// The query X coordinate is out of bounds, so return the "nearest" output.
if (first && virt_x < first->virt_x) {
return first;
}
return last;
}
void sl_output_calculate_virtual_dimensions(struct sl_host_output* host) {
int scale;
int virt_physical_width;
int virt_physical_height;
int virt_width;
int virt_height;
if (host->ctx->use_direct_scale) {
sl_output_init_dimensions_direct(host, &scale, &virt_physical_width,
&virt_physical_height, &virt_width,
&virt_height);
} else {
sl_output_get_dimensions_original(host, &scale, &virt_physical_width,
&virt_physical_height, &virt_width,
&virt_height);
}
host->scale_factor = scale;
host->virt_width = virt_width;
host->virt_height = virt_height;
host->virt_physical_width = virt_physical_width;
host->virt_physical_height = virt_physical_height;
sl_output_apply_rotation(host->transform, virt_width, virt_height,
&host->virt_rotated_width,
&host->virt_rotated_height);
host->needs_update = true;
}
// Function which pushes the state of an output to the client.
void sl_output_send_host_output_state(struct sl_host_output* host) {
// Could be more granular, but the current implementation means that if one
// value changes, everything should be impacted.
if (host->needs_update) {
wl_output_send_geometry(host->resource, host->virt_x, 0,
host->virt_physical_width,
host->virt_physical_height, host->subpixel,
host->make, host->model, host->transform);
wl_output_send_mode(host->resource, host->flags | WL_OUTPUT_MODE_CURRENT,
host->virt_width, host->virt_height, host->refresh);
if (wl_resource_get_version(host->resource) >=
WL_OUTPUT_SCALE_SINCE_VERSION)
wl_output_send_scale(host->resource, host->scale_factor);
if (wl_resource_get_version(host->resource) >= WL_OUTPUT_DONE_SINCE_VERSION)
wl_output_send_done(host->resource);
host->needs_update = false;
}
}
static void sl_output_geometry(void* data,
struct wl_output* output,
int x,
int y,
int physical_width,
int physical_height,
int subpixel,
const char* make,
const char* model,
int transform) {
void* result = wl_output_get_user_data(output);
sl_host_output* host = static_cast<sl_host_output*>(result);
host->x = x;
host->y = y;
host->physical_width = physical_width;
host->physical_height = physical_height;
host->subpixel = subpixel;
free(host->model);
host->model = strdup(model);
free(host->make);
host->make = strdup(make);
host->transform = transform;
auto pointer = std::find(host->ctx->host_outputs.begin(),
host->ctx->host_outputs.end(), host);
assert(pointer != host->ctx->host_outputs.end());
// host_outputs is sorted by x. Delete then re-insert at the correct
// position.
host->ctx->host_outputs.erase(pointer);
// Insert at the end by default. If insert_at is not set in the loop,
// hosts's x is larger than all the ones in the list currently.
auto insert_at = host->ctx->host_outputs.end();
for (auto it = host->ctx->host_outputs.begin();
it != host->ctx->host_outputs.end(); ++it) {
if ((*it)->x > host->x) {
insert_at = it;
break;
}
}
host->ctx->host_outputs.insert(insert_at, host);
}
static void sl_output_mode(void* data,
struct wl_output* output,
uint32_t flags,
int width,
int height,
int refresh) {
struct sl_host_output* host =
static_cast<sl_host_output*>(wl_output_get_user_data(output));
host->flags = flags;
host->width = width;
host->height = height;
host->refresh = refresh;
host->needs_update = true;
}
static void sl_output_done(void* data, struct wl_output* output) {
struct sl_host_output* host =
static_cast<sl_host_output*>(wl_output_get_user_data(output));
// Early out if scale is expected but not yet know.
if (host->expecting_scale)
return;
// Recalculate according to any information that's been modified.
sl_output_calculate_virtual_dimensions(host);
// Shift all outputs that are to the right of host to the right if needed.
sl_output_update_output_x(host->ctx);
sl_output_send_host_output_state(host);
// Expect scale if aura output exists.
if (host->aura_output)
host->expecting_scale = 1;
}
static void sl_output_scale(void* data,
struct wl_output* output,
int32_t scale_factor) {
struct sl_host_output* host =
static_cast<sl_host_output*>(wl_output_get_user_data(output));
host->scale_factor = scale_factor;
}
static const struct wl_output_listener sl_output_listener = {
sl_output_geometry, sl_output_mode, sl_output_done, sl_output_scale};
static void sl_aura_output_scale(void* data,
struct zaura_output* output,
uint32_t flags,
uint32_t scale) {
struct sl_host_output* host =
static_cast<sl_host_output*>(zaura_output_get_user_data(output));
if (flags & ZAURA_OUTPUT_SCALE_PROPERTY_CURRENT)
host->current_scale = scale;
if (flags & ZAURA_OUTPUT_SCALE_PROPERTY_PREFERRED)
host->preferred_scale = scale;
host->expecting_scale = 0;
}
static void sl_aura_output_connection(void* data,
struct zaura_output* output,
uint32_t connection) {
struct sl_host_output* host =
static_cast<sl_host_output*>(zaura_output_get_user_data(output));
host->internal = connection == ZAURA_OUTPUT_CONNECTION_TYPE_INTERNAL;
}
static void sl_aura_output_device_scale_factor(void* data,
struct zaura_output* output,
uint32_t device_scale_factor) {
struct sl_host_output* host =
static_cast<sl_host_output*>(zaura_output_get_user_data(output));
host->device_scale_factor = device_scale_factor;
}
static const struct zaura_output_listener sl_aura_output_listener = {
sl_aura_output_scale, sl_aura_output_connection,
sl_aura_output_device_scale_factor, /*insets=*/DoNothing,
/*logical_transform=*/DoNothing};
static void sl_destroy_host_output(struct wl_resource* resource) {
struct sl_host_output* host =
static_cast<sl_host_output*>(wl_resource_get_user_data(resource));
if (host->aura_output)
zaura_output_destroy(host->aura_output);
if (wl_output_get_version(host->proxy) >= WL_OUTPUT_RELEASE_SINCE_VERSION) {
wl_output_release(host->proxy);
} else {
wl_output_destroy(host->proxy);
}
wl_resource_set_user_data(resource, nullptr);
auto pointer = std::find(host->ctx->host_outputs.begin(),
host->ctx->host_outputs.end(), host);
assert(pointer != host->ctx->host_outputs.end());
host->ctx->host_outputs.erase(pointer);
free(host->make);
free(host->model);
// Shift all outputs to the right of the deleted output to the left.
sl_output_update_output_x(host->ctx);
delete host;
}
static void sl_xdg_output_logical_position(
void* data, struct zxdg_output_v1* zxdg_output_v1, int32_t x, int32_t y) {
struct sl_host_output* host = static_cast<sl_host_output*>(
zxdg_output_v1_get_user_data(zxdg_output_v1));
host->logical_y = y;
host->logical_x = x;
}
static void sl_xdg_output_logical_size(void* data,
struct zxdg_output_v1* zxdg_output_v1,
int32_t width,
int32_t height) {
struct sl_host_output* host = static_cast<sl_host_output*>(
zxdg_output_v1_get_user_data(zxdg_output_v1));
host->logical_width = width;
host->logical_height = height;
host->expecting_logical_size = false;
}
static const struct zxdg_output_v1_listener sl_xdg_output_listener = {
sl_xdg_output_logical_position, sl_xdg_output_logical_size,
/*done=*/DoNothing,
/*name=*/DoNothing, /*desc=*/DoNothing};
static void sl_bind_host_output(struct wl_client* client,
void* data,
uint32_t version,
uint32_t id) {
struct sl_output* output = (struct sl_output*)data;
struct sl_context* ctx = output->ctx;
struct sl_host_output* host = new sl_host_output();
host->ctx = ctx;
host->resource = wl_resource_create(client, &wl_output_interface,
MIN(version, output->version), id);
wl_resource_set_implementation(host->resource, nullptr, host,
sl_destroy_host_output);
host->proxy = static_cast<wl_output*>(wl_registry_bind(
wl_display_get_registry(ctx->display), output->id, &wl_output_interface,
wl_resource_get_version(host->resource)));
wl_output_add_listener(host->proxy, &sl_output_listener, host);
output->host_output = host;
host->aura_output = nullptr;
// We assume that first output is internal by default.
host->internal = ctx->host_outputs.empty();
// We'll always need to forward this information.
host->needs_update = true;
host->x = 0;
host->y = 0;
host->virt_x = 0;
host->virt_y = 0;
host->logical_x = 0;
host->logical_y = 0;
host->physical_width = 0;
host->physical_height = 0;
host->virt_physical_width = 0;
host->virt_physical_height = 0;
host->subpixel = WL_OUTPUT_SUBPIXEL_UNKNOWN;
host->make = strdup("unknown");
host->model = strdup("unknown");
host->transform = WL_OUTPUT_TRANSFORM_NORMAL;
host->flags = 0;
host->width = 1024;
host->height = 768;
host->virt_width = 1024;
host->virt_height = 768;
host->virt_rotated_width = 0;
host->virt_rotated_height = 0;
host->logical_width = 1024;
host->logical_height = 768;
host->refresh = 60000;
host->scale_factor = 1;
host->current_scale = 1000;
host->preferred_scale = 1000;
host->device_scale_factor = 1000;
host->expecting_scale = 0;
host->expecting_logical_size = false;
ctx->host_outputs.push_back(host);
if (ctx->aura_shell) {
host->expecting_scale = 1;
host->internal = 0;
host->aura_output =
zaura_shell_get_aura_output(ctx->aura_shell->internal, host->proxy);
zaura_output_add_listener(host->aura_output, &sl_aura_output_listener,
host);
}
if (ctx->xdg_output_manager) {
host->expecting_logical_size = true;
host->zxdg_output = zxdg_output_manager_v1_get_xdg_output(
ctx->xdg_output_manager->internal, host->proxy);
zxdg_output_v1_add_listener(host->zxdg_output, &sl_xdg_output_listener,
host);
}
}
struct sl_global* sl_output_global_create(struct sl_output* output) {
return sl_global_create(output->ctx, &wl_output_interface, output->version,
output, sl_bind_host_output);
}