-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathhelper.go
175 lines (147 loc) · 3.42 KB
/
helper.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
package genetic_algorithm
import (
"fmt"
"math"
"math/rand"
)
// https://hg.python.org/cpython/file/4480506137ed/Lib/statistics.py#l453
func meanFloat64(values []float64) float64 {
if len(values) == 0 {
return 0
}
var sum float64
for _, val := range values {
sum += val
}
return sum / float64(len(values))
}
func meanFloat64Iter(count int, value func(int) float64) float64 {
if count == 0 {
return 0
}
var sum float64
for i := 0; i < count; i++ {
sum += value(i)
}
return sum / float64(count)
}
// Expects at least one value in each array
func meanFloat64Arr(values [][]float64) []float64 {
if len(values) == 0 {
return []float64{}
}
length := 0
for _, arr := range values {
if length < len(arr) {
length = len(arr)
}
}
sum := make([]float64, length)
for i := 0; i < length; i++ {
for _, arr := range values {
if len(arr) > i {
sum[i] += arr[i]
} else {
sum[i] += arr[len(arr)-1]
}
}
}
for i := 0; i < length; i++ {
sum[i] /= float64(len(values))
}
return sum
}
// Expects at least one value in each array
func meanFloat64ArrIter(count int, value func(int) []float64) []float64 {
values := make([][]float64, count)
for i := 0; i < count; i++ {
values[i] = value(i)
}
return meanFloat64Arr(values)
}
func meanInt64(values []int64) int64 {
if len(values) == 0 {
return 0
}
var sum int64
for _, val := range values {
sum += val
}
return sum / int64(len(values))
}
func meanInt64Iter(count int, value func(int) int64) int64 {
if count == 0 {
return 0
}
var sum int64
for i := 0; i < count; i++ {
sum += value(i)
}
return sum / int64(count)
}
// Return sum of square deviations
func ssFloat64(values []float64) float64 {
mean := meanFloat64(values)
var sum float64
var dsum float64
for _, val := range values {
dsum += val - mean
sum += math.Pow(val-mean, 2)
}
// Rounding error compensation. Ideally dsum equals zero.
sum -= math.Pow(dsum, 2) / float64(len(values))
return sum
}
// Sample variance
func varianceFloat64(values []float64) float64 {
return ssFloat64(values) / (float64(len(values)) - 1)
}
// Population variance
func pvarianceFloat64(values []float64) float64 {
return ssFloat64(values) / float64(len(values))
}
func chooseTwoPointCrossSection(genesLen int, canProduceCopiesOfParents bool) (crossPoint1 int, crossPoint2 int) {
crossPoint1 = rand.Intn(genesLen)
if !canProduceCopiesOfParents && crossPoint1 == 0 {
crossPoint2 = rand.Intn(genesLen-1) + 1
} else {
crossPoint2 = rand.Intn(genesLen-crossPoint1) + 1 + crossPoint1
}
return
}
func chooseDifferentRandomNumbers(count, upperBound int) []int {
if upperBound < count {
panic(fmt.Sprintf("Can't select %d different numbers on inerval [0:%d)", count, upperBound))
}
numbersMap := make(map[int]bool, count)
numbersList := make([]int, count)
for i := 0; i < count; i++ {
for {
number := rand.Intn(upperBound)
if !numbersMap[number] {
numbersMap[number] = true
numbersList[i] = number
break
}
}
}
return numbersList
}
func round(val float64) int {
return int(roundEx(val, .5, 0))
}
func roundEx(val float64, roundOn float64, places int) (newVal float64) {
var round float64
pow := math.Pow(10, float64(places))
digit := pow * val
_, div := math.Modf(digit)
_div := math.Copysign(div, val)
_roundOn := math.Copysign(roundOn, val)
if _div >= _roundOn {
round = math.Ceil(digit)
} else {
round = math.Floor(digit)
}
newVal = round / pow
return
}