Skip to content

Commit f9672a7

Browse files
authored
Merge pull request #10 from XanaduAI/improvements-to-plots
Improvements to plots while polishing the paper
2 parents 4a37f0d + c5f5876 commit f9672a7

File tree

53 files changed

+44468
-279
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

53 files changed

+44468
-279
lines changed

README.md

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -176,10 +176,10 @@ generate results for a hyperparameter search for any model and dataset. The scri
176176
can be run as
177177

178178
```
179-
python run_hyperparameter_search.py --classifier-name "DataReuploadingClassifier" --dataset-path "dataset.csv"
179+
python run_hyperparameter_search.py --classifier-name "DataReuploadingClassifier" --dataset-path "my_dataset.csv"
180180
```
181181

182-
where `dataset.csv` is a CSV file containing the training data, where each column is a feature
182+
where `my_dataset.csv` is a CSV file containing the training data such that each column is a feature
183183
and the last column is the target.
184184

185185
Unless otherwise specified, the hyperparameter grid is loaded from `qml_benchmarks/hyperparameter_settings.py`.
@@ -190,7 +190,7 @@ For example, for the `DataReuploadingClassifier` we can run:
190190
```
191191
python run_hyperparameter_search.py \
192192
--classifier-name DataReuploadingClassifier \
193-
--dataset-path "../paper/benchmarks/hidden_manifold/hidden_manifold-6manifold-2d_train.csv" \
193+
--dataset-path "my_dataset.csv" \
194194
--n_layers 1 2 \
195195
--observable_type "single" "full"\
196196
--learning_rate 0.001 \

paper/benchmarks/generate_two_curves.py

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -21,7 +21,7 @@
2121

2222
np.random.seed(3)
2323

24-
os.makedirs("two_curves", exist_ok=True)
24+
os.makedirs("two_curves_diff", exist_ok=True)
2525

2626
n_samples = 300
2727
degree = 5
@@ -32,11 +32,11 @@
3232
X, y = generate_two_curves(n_samples, n_features, degree, offset, noise)
3333
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
3434

35-
name_train = f"two_curves/two_curves-5degree-0.1offset-{n_features}d_train.csv"
35+
name_train = f"two_curves_diff/two_curves-5degree-0.1offset-{n_features}d_train.csv"
3636
data_train = np.c_[X_train, y_train]
3737
np.savetxt(name_train, data_train, delimiter=",")
3838

39-
name_test = f"two_curves/two_curves-5degree-0.1offset-{n_features}d_test.csv"
39+
name_test = f"two_curves_diff/two_curves-5degree-0.1offset-{n_features}d_test.csv"
4040
data_test = np.c_[X_test, y_test]
4141
np.savetxt(name_test, data_test, delimiter=",")
4242

paper/plots/datasets-for-plots/hidden_manifold_model/hidden_manifold-6manifold-10d_test.csv

Lines changed: 60 additions & 0 deletions
Large diffs are not rendered by default.

paper/plots/datasets-for-plots/hidden_manifold_model/hidden_manifold-6manifold-10d_train.csv

Lines changed: 240 additions & 0 deletions
Large diffs are not rendered by default.
Lines changed: 60 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,60 @@
1+
-8.125442498186785656e-02,4.883624209596179599e-01,-1.000000000000000000e+00
2+
-4.880696660322383362e-01,-9.415073218145632028e-01,-1.000000000000000000e+00
3+
-5.675889216723800645e-02,6.141176003673594064e-01,-1.000000000000000000e+00
4+
-9.714804594829699047e-01,-9.179324771627691559e-01,1.000000000000000000e+00
5+
3.750937061456241506e-01,-9.216911520955604065e-01,1.000000000000000000e+00
6+
7.123245162257666463e-01,-6.950340164974062596e-01,1.000000000000000000e+00
7+
5.999394038313312638e-01,-7.617850200998640409e-01,-1.000000000000000000e+00
8+
-1.548702962621519852e-01,5.096038654745551622e-01,-1.000000000000000000e+00
9+
-9.287996518209272745e-01,3.611857181892434709e-02,1.000000000000000000e+00
10+
2.735726715058243164e-01,6.671308124286224467e-03,-1.000000000000000000e+00
11+
8.735750094391049325e-01,-1.976384909225375186e-01,-1.000000000000000000e+00
12+
-6.693863010616740716e-01,2.498875971463402623e-01,1.000000000000000000e+00
13+
-2.146488526344703107e-01,-7.306764392544623510e-01,-1.000000000000000000e+00
14+
2.197145035545715885e-01,-4.779481279873272759e-01,-1.000000000000000000e+00
15+
-6.874923802878277757e-01,-9.644999528660740395e-01,1.000000000000000000e+00
16+
5.996939660801872130e-01,-9.472901272255039862e-01,1.000000000000000000e+00
17+
-6.864712453635422040e-01,3.934208904867436130e-01,-1.000000000000000000e+00
18+
9.760149852602458820e-01,3.539072985454199127e-01,-1.000000000000000000e+00
19+
-3.925660789305510101e-01,-5.928536013220752077e-01,-1.000000000000000000e+00
20+
-3.409196551174262790e-01,-6.136647535909964812e-01,1.000000000000000000e+00
21+
-8.077134214387420297e-01,-2.143820552219941888e-01,-1.000000000000000000e+00
22+
8.110469081411996184e-01,-7.761465545774156594e-01,1.000000000000000000e+00
23+
-6.649408094976124728e-01,-9.988443759253352594e-01,1.000000000000000000e+00
24+
8.433274758386666292e-01,-9.723091590048399402e-01,1.000000000000000000e+00
25+
-8.653198734323361840e-01,7.849180933322664755e-01,-1.000000000000000000e+00
26+
-2.164717898649305416e-01,-9.714873132635286623e-01,1.000000000000000000e+00
27+
-6.270343458211901089e-01,-7.675799298516652325e-01,1.000000000000000000e+00
28+
-8.349407449991006480e-01,-8.579639529882093774e-01,1.000000000000000000e+00
29+
6.903535362899787531e-01,-9.448658555203446330e-01,1.000000000000000000e+00
30+
-7.045141063670551373e-02,-6.452661837619217966e-01,1.000000000000000000e+00
31+
1.581918241356233545e-01,-8.077332182656158377e-01,-1.000000000000000000e+00
32+
5.766335095010702294e-02,9.172254985444024955e-01,-1.000000000000000000e+00
33+
-3.052155776985577829e-01,7.083850751772392818e-02,-1.000000000000000000e+00
34+
6.752556678548498059e-01,4.676864567931955929e-01,1.000000000000000000e+00
35+
-3.181809479554305320e-02,-9.685084434620434557e-01,1.000000000000000000e+00
36+
-8.161617715936075879e-01,-5.499874980328895990e-01,-1.000000000000000000e+00
37+
-7.859649866651802208e-01,-9.794988549792666976e-01,1.000000000000000000e+00
38+
-7.602247902620680176e-01,4.693604198653402726e-01,-1.000000000000000000e+00
39+
8.944635604250041894e-01,-6.327258198603583628e-01,-1.000000000000000000e+00
40+
-3.213451925854416968e-01,-9.331455151650721591e-01,1.000000000000000000e+00
41+
-6.972303507259309807e-01,6.171335079363011733e-01,1.000000000000000000e+00
42+
6.639582000813107898e-01,4.885457328500152352e-01,-1.000000000000000000e+00
43+
5.366082952146966623e-01,-7.336931959705484951e-01,1.000000000000000000e+00
44+
2.069941129139817870e-01,-8.637154828103928983e-01,1.000000000000000000e+00
45+
-7.482433890648125807e-01,-3.830674432405003493e-01,-1.000000000000000000e+00
46+
8.760203652609900304e-01,-8.686156212620874673e-01,-1.000000000000000000e+00
47+
-9.054010140838013587e-01,-4.052315675673267559e-01,-1.000000000000000000e+00
48+
-7.544329972922274585e-01,-8.746569336236071912e-01,1.000000000000000000e+00
49+
4.061930056299248304e-01,-6.099055556459410665e-01,-1.000000000000000000e+00
50+
3.147457392102370188e-01,-1.810183091413493095e-01,1.000000000000000000e+00
51+
-6.234239128421162901e-01,-1.998252547371802412e-01,1.000000000000000000e+00
52+
3.314353394342303138e-01,-3.414337329256685871e-01,-1.000000000000000000e+00
53+
6.393428300014453169e-01,-8.467535394699280404e-01,1.000000000000000000e+00
54+
-3.268100853725250943e-01,-9.825999051483225166e-01,1.000000000000000000e+00
55+
5.343333541477821580e-01,6.213862388586257612e-01,-1.000000000000000000e+00
56+
5.088085071368797507e-01,-8.756319481951706507e-01,-1.000000000000000000e+00
57+
-8.321352404871465991e-01,-7.319366728458287508e-01,1.000000000000000000e+00
58+
9.450705462927069256e-01,-3.715518721388081369e-01,-1.000000000000000000e+00
59+
-2.177406188132161025e-01,-3.355399661462188377e-01,1.000000000000000000e+00
60+
9.799196872505397948e-01,5.539619806704182414e-01,-1.000000000000000000e+00

0 commit comments

Comments
 (0)