forked from CODAIT/deep-histopath
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhyperparam_tune_mitoses.py
188 lines (153 loc) · 8.88 KB
/
hyperparam_tune_mitoses.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
"""Hyperparameter tuning - mitosis detection"""
import argparse
import json
import os
import random
import sys
import numpy as np
import tensorflow as tf
import train_mitoses
def main(args=None):
# parse args
parser = argparse.ArgumentParser()
parser.add_argument("--patches_path", required=True,
help="path to the generated image patches containing `train` & `val` folders ")
parser.add_argument("--exp_parent_path",
default=os.path.join("experiments", "mitoses", "hyp"),
help="parent path in which to store experiment folders (default: %(default)s)")
parser.add_argument("--models", nargs='*', default=["vgg", "resnet"],
help="list of names of models to use, where the names can be selected from ['logreg', "\
"'vgg', 'vgg_new', 'vgg19', 'resnet', 'resnet_new', 'resnet_custom'] "\
"(default: %(default)s)")
parser.add_argument("--model_weights", default=None,
help="optional hdf5 file containing the initial weights of the model. if not supplied, the "\
"model will start with pretrained weights from imagenet. if this is set, the `models` "\
"list must contain a single model that is compatible with these weights "\
"(default: %(default)s)")
parser.add_argument("--patch_size", type=int, default=64,
help="integer length to which the square patches will be resized (default: %(default)s)")
parser.add_argument("--train_batch_sizes", nargs='*', type=int, default=[32],
help="list of training batch sizes (default: %(default)s)")
parser.add_argument("--val_batch_size", type=int, default=32,
help="validation batch size for all experiments (default: %(default)s)")
parser.add_argument("--clf_epochs", type=int, default=5,
help="number of epochs for which to train the new classifier layers (default: %(default)s)")
parser.add_argument("--finetune_epochs", type=int, default=5,
help="number of epochs for which to fine-tune the unfrozen layers (default: %(default)s)")
parser.add_argument("--clf_lr_range", nargs=2, type=float, default=(1e-5, 1e-2),
help="half-open interval for the learning rate for training the new classifier layers "\
"(default: %(default)s)")
parser.add_argument("--finetune_lr_range", nargs=2, type=float, default=(1e-7, 1e-2),
help="half-open interval for the learning rate for fine-tuning the unfrozen layers "\
"(default: %(default)s)")
parser.add_argument("--finetune_momentum_range", nargs=2, type=float, default=(0.85, 0.95),
help="half-open interval for the momentum rate for fine-tuning the unfrozen layers "\
"(default: %(default)s)")
parser.add_argument("--finetune_layers", nargs='*', type=int, default=[0, -1],
help="list of the number of layers at the end of the pretrained portion of the model to "\
"fine-tune (note: the new classifier layers will still be trained during fine-tuning "\
"as well) (default: %(default)s)")
parser.add_argument("--l2_range", nargs=2, type=float, default=[0, 1e-2],
help="half-closed interval for the amount of l2 weight regularization (default: %(default)s)")
parser.add_argument("--reg_biases", default=False, action="store_true",
help="whether or not to regularize biases. (default: %(default)s)")
parser.add_argument("--skip_reg_final", dest="reg_final", action="store_false",
help="whether or not to skip regularization of the logits-producing layer "\
"(default: %(default)s)")
parser.set_defaults(reg_final=True)
augment_parser = parser.add_mutually_exclusive_group(required=False)
augment_parser.add_argument("--augment", dest="augment", action="store_true",
help="apply random augmentation to the training images (default: True)")
augment_parser.add_argument("--no_augment", dest="augment", action="store_false",
help="do not apply random augmentation to the training images (default: False)")
parser.set_defaults(augment=True)
parser.add_argument("--marginalize", default=False, action="store_true",
help="use noise marginalization when evaluating the validation set. if this is set, then "\
"the validation batch_size must be divisible by 4, or equal to 1 for no augmentation "\
"(default: %(default)s)")
parser.add_argument("--oversample", default=False, action="store_true",
help="oversample the minority mitosis class during training via class-aware sampling "\
"(default: %(default)s)")
parser.add_argument("--num_gpus", type=int, default=1,
help="num_gpus: Integer number of GPUs to use for data parallelism. (default: %(default)s)")
parser.add_argument("--threads", type=int, default=5,
help="number of threads for dataset parallel processing; note: this will cause "\
"non-reproducibility for values > 1 (default: %(default)s)")
parser.add_argument("--prefetch_batches", type=int, default=100,
help="number of batches to prefetch (default: %(default)s)")
parser.add_argument("--log_interval", type=int, default=100,
help="number of steps between logging during training (default: %(default)s)")
parser.add_argument("--num_experiments", type=int, default=100,
help="number of experiments to run (default: %(default)s)")
args = parser.parse_args(args)
# save args to a file in the experiment parent folder, appending if it exists
if not os.path.exists(args.exp_parent_path):
os.makedirs(args.exp_parent_path)
with open(os.path.join(args.exp_parent_path, 'args.txt'), 'a') as f:
json.dump(args.__dict__, f)
print("", file=f)
# can be read in later with
#with open('args.txt', 'r') as f:
# args = json.load(f)
# save command line invocation to txt file for ease of rerunning the exact hyperparam search
with open(os.path.join(args.exp_parent_path, 'invoke.txt'), 'a') as f:
f.write("python3 " + " ".join(sys.argv) + "\n")
# hyperparameter search
for i in range(args.num_experiments):
# NOTE: as a quick POC, we will use the command-line interface of the training script
# TODO: extract experiment setup code in the training script main function into a class so that
# we can reuse it from here
train_args = []
train_args.append("--patches_path={args.patches_path}".format(args=args))
train_args.append("--exp_parent_path={args.exp_parent_path}".format(args=args))
model = random.choice(args.models)
train_args.append("--model={model}".format(model=model))
if args.model_weights:
train_args.append("--model_weights={args.model_weights}".format(args=args))
train_args.append("--patch_size={args.patch_size}".format(args=args))
train_batch_size = random.choice(args.train_batch_sizes)
train_args.append("--train_batch_size={train_batch_size}".format(train_batch_size=train_batch_size))
train_args.append("--val_batch_size={args.val_batch_size}".format(args=args))
train_args.append("--clf_epochs={args.clf_epochs}".format(args=args))
train_args.append("--finetune_epochs={args.finetune_epochs}".format(args=args))
clf_lr_lb, clf_lr_ub = args.clf_lr_range
clf_lr = np.random.uniform(clf_lr_lb, clf_lr_ub)
train_args.append("--clf_lr={clf_lr}".format(clf_lr=clf_lr))
finetune_lr_lb, finetune_lr_ub = args.finetune_lr_range
finetune_lr = np.random.uniform(finetune_lr_lb, finetune_lr_ub)
train_args.append("--finetune_lr={finetune_lr}".format(finetune_lr=finetune_lr))
finetune_momentum_lb, finetune_momentum_ub = args.finetune_momentum_range
finetune_momentum = np.random.uniform(finetune_momentum_lb, finetune_momentum_ub)
train_args.append("--finetune_momentum={finetune_momentum}".format(finetune_momentum=finetune_momentum))
finetune_layers = random.choice(args.finetune_layers)
train_args.append("--finetune_layers={finetune_layers}".format(finetune_layers=finetune_layers))
l2_lb, l2_ub = args.l2_range
l2 = np.random.uniform(l2_lb, l2_ub)
train_args.append("--l2={l2}".format(l2=l2))
if args.reg_biases:
train_args.append("--reg_biases")
if not args.reg_final:
train_args.append("--skip_reg_final")
if args.augment:
train_args.append("--augment")
else:
train_args.append("--no_augment")
if args.marginalize:
train_args.append("--marginalize")
if args.oversample:
train_args.append("--oversample")
train_args.append("--num_gpus={args.num_gpus}".format(args=args))
train_args.append("--threads={args.threads}".format(args=args))
train_args.append("--prefetch_batches={args.prefetch_batches}".format(args=args))
train_args.append("--log_interval={args.log_interval}".format(args=args))
# train!
try:
train_mitoses.main(train_args)
except tf.errors.InvalidArgumentError as e: # if values become nan or inf
print(e)
print("Experiment failed!")
# it is necessary to completely reset everything in between experiments
tf.reset_default_graph()
tf.keras.backend.clear_session()
if __name__ == "__main__":
main()