We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Thank you for this remarkable work! When I test TFG on the audio declipping task, it produces the following results:
Logging to logs/audio_declipping/tfg+recur_steps=1+iter_steps=4/target=no/rho=1.0-increase+mu=1.0-increase+sigma=0.1-decrease Arguments: Arguments(data_type='audio', dataset='teticio/audio-diffusion-256', task='audio_declipping', image_size=256, include_charges=False, generators_path='./pretrained_models/EDMsecond/generative_model_ema.npy', args_generators_path='./pretrained_models/EDMsecond/args.pickle', energy_path='./pretrained_models/tf_predict_mu/model_ema_2000.npy', args_energy_path='./pretrained_models/tf_predict_mu/args_2000.pickle', classifiers_path='./pretrained_models/evaluate_mu/best_checkpoint.npy', args_classifiers_path='./pretrained_models/evaluate_mu/args.pickle', clip_scale=100, audio_length=10, volume_factor=80.0, motion_prompt='walk', radius=3.0, model_name_or_path='audio-diffusion-256', train_steps=1000, inference_steps=100, eta=1.0, clip_x0=True, clip_sample_range=1.0, seed=42, device=device(type='cuda'), logging_dir='logs/audio_declipping/tfg+recur_steps=1+iter_steps=4/target=no/rho=1.0-increase+mu=1.0-increase+sigma=0.1-decrease', logger=None, per_sample_batch_size=8, num_samples=256, batch_id=0, guidance_name='tfg', guider='classifier', target='no', recur_steps=1, iter_steps=4, guidance_strength=8.0, rho=1.0, mu=1.0, sigma=0.1, eps_bsz=1, rho_schedule='increase', mu_schedule='increase', sigma_schedule='decrease', guide_network='no', classifier_image_size=224, eval_batch_size=16, logging_resolution=512, log_suffix='', log_traj=False, max_show_images=256, check_done=False, wandb=False, wandb_project='trail', wandb_name=None, wandb_entity='llm-selection', saved_file=None, sort_metric=None, topk=5, output_path='vis_molecule', max_n_samples=10000000000) audio samples are saved in logs/audio_declipping/tfg+recur_steps=1+iter_steps=4/target=no/rho=1.0-increase+mu=1.0-increase+sigma=0.1-decrease/audios Evaluating 256 samples {'recover_score': -24.352653304259437, 'fad': 0.6809635173891131}
This seems to differ significantly from the metrics reported in the paper. Is there any issue causing this?
The text was updated successfully, but these errors were encountered:
No branches or pull requests
Thank you for this remarkable work!
When I test TFG on the audio declipping task, it produces the following results:
Logging to logs/audio_declipping/tfg+recur_steps=1+iter_steps=4/target=no/rho=1.0-increase+mu=1.0-increase+sigma=0.1-decrease
Arguments: Arguments(data_type='audio', dataset='teticio/audio-diffusion-256', task='audio_declipping', image_size=256, include_charges=False, generators_path='./pretrained_models/EDMsecond/generative_model_ema.npy', args_generators_path='./pretrained_models/EDMsecond/args.pickle', energy_path='./pretrained_models/tf_predict_mu/model_ema_2000.npy', args_energy_path='./pretrained_models/tf_predict_mu/args_2000.pickle', classifiers_path='./pretrained_models/evaluate_mu/best_checkpoint.npy', args_classifiers_path='./pretrained_models/evaluate_mu/args.pickle', clip_scale=100, audio_length=10, volume_factor=80.0, motion_prompt='walk', radius=3.0, model_name_or_path='audio-diffusion-256', train_steps=1000, inference_steps=100, eta=1.0, clip_x0=True, clip_sample_range=1.0, seed=42, device=device(type='cuda'), logging_dir='logs/audio_declipping/tfg+recur_steps=1+iter_steps=4/target=no/rho=1.0-increase+mu=1.0-increase+sigma=0.1-decrease', logger=None, per_sample_batch_size=8, num_samples=256, batch_id=0, guidance_name='tfg', guider='classifier', target='no', recur_steps=1, iter_steps=4, guidance_strength=8.0, rho=1.0, mu=1.0, sigma=0.1, eps_bsz=1, rho_schedule='increase', mu_schedule='increase', sigma_schedule='decrease', guide_network='no', classifier_image_size=224, eval_batch_size=16, logging_resolution=512, log_suffix='', log_traj=False, max_show_images=256, check_done=False, wandb=False, wandb_project='trail', wandb_name=None, wandb_entity='llm-selection', saved_file=None, sort_metric=None, topk=5, output_path='vis_molecule', max_n_samples=10000000000)
audio samples are saved in logs/audio_declipping/tfg+recur_steps=1+iter_steps=4/target=no/rho=1.0-increase+mu=1.0-increase+sigma=0.1-decrease/audios
Evaluating 256 samples
{'recover_score': -24.352653304259437, 'fad': 0.6809635173891131}
This seems to differ significantly from the metrics reported in the paper. Is there any issue causing this?
The text was updated successfully, but these errors were encountered: