forked from clMathLibraries/clSPARSE
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsample-axpy.cpp
220 lines (167 loc) · 6.31 KB
/
sample-axpy.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
/* ************************************************************************
* Copyright 2015 Vratis, Ltd.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* ************************************************************************ */
/*! \file
* \brief Simple demonstration code for how to execute an Axpy operation with
* clSPARSE
*/
#include <iostream>
#include <vector>
#define CL_HPP_ENABLE_EXCEPTIONS
#define CL_HPP_MINIMUM_OPENCL_VERSION BUILD_CLVERSION
#define CL_HPP_TARGET_OPENCL_VERSION BUILD_CLVERSION
#include <CL/cl2.hpp>
#include "clSPARSE.h"
#include "clSPARSE-error.h"
/*!
* \brief Sample AXPY (C++)
* \details Program presents use of clSPARSE library in AXPY (y = alpha * x + y) operation
* by completing following steps:
* 1. Setup OpenCL environment
* 2. Setup GPU buffers
* 3. Init clSPARSE library
* 4. Execute algorithm cldenseSaxpy
* 5. Shutdown clSPARSE library & OpenCL
*
* \note UNIX Hint: Before allocating more than 3GB of VRAM define GPU_FORCE_64BIT_PTR=1
* in your system environment to enable 64bit addresing;
*/
int main(int argc, char* argv[])
{
std::cout << "Executing sample clSPARSE AXPY (y = alpha * x + y) C++" << std::endl;
/** Step 1. Setup OpenCL environment; **/
// Init OpenCL environment;
cl_int cl_status;
// Get OpenCL platforms
std::vector<cl::Platform> platforms;
cl_status = cl::Platform::get(&platforms);
if (cl_status != CL_SUCCESS)
{
std::cout << "Problem with getting OpenCL platforms"
<< " [" << cl_status << "]" << std::endl;
return -1;
}
int platform_id = 0;
for (const auto& p : platforms)
{
std::cout << "Platform ID " << platform_id++ << " : "
<< p.getInfo<CL_PLATFORM_NAME>() << std::endl;
}
// Using first platform
platform_id = 0;
cl::Platform platform = platforms[platform_id];
// Get device from platform
std::vector<cl::Device> devices;
cl_status = platform.getDevices(CL_DEVICE_TYPE_GPU, &devices);
if (cl_status != CL_SUCCESS)
{
std::cout << "Problem with getting devices from platform"
<< " [" << platform_id << "] " << platform.getInfo<CL_PLATFORM_NAME>()
<< " error: [" << cl_status << "]" << std::endl;
}
std::cout << std::endl
<< "Getting devices from platform " << platform_id << std::endl;
cl_int device_id = 0;
for (const auto& device : devices)
{
std::cout << "Device ID " << device_id++ << " : "
<< device.getInfo<CL_DEVICE_NAME>() << std::endl;
}
// Using first device;
device_id = 0;
cl::Device device = devices[device_id];
// Create OpenCL context;
cl::Context context (device);
// Create OpenCL queue;
cl::CommandQueue queue(context, device);
/** Step 2. Setup GPU buffers **/
// Let's create host buffers first.
// size of the vectors;
int N = 1024;
float alpha = 2.0f;
std::vector<float> y(N, 2.0f);
std::vector<float> x(N, 1.0f);
// GPU buffers
clsparseScalar gpuAlpha;
clsparseInitScalar(&gpuAlpha);
cldenseVector gpuY;
clsparseInitVector(&gpuY);
cldenseVector gpuX;
clsparseInitVector(&gpuX);
// Allocate alpha on gpu by using host pointer
gpuAlpha.value = ::clCreateBuffer (context(), CL_MEM_READ_ONLY | CL_MEM_USE_HOST_PTR,
sizeof(float), &alpha, &cl_status);
if (cl_status != CL_SUCCESS )
{
std::cout << "Problem with allocating alpha buffer on GPU\n " << std::endl;
}
gpuY.values = ::clCreateBuffer (context(), CL_MEM_READ_WRITE | CL_MEM_USE_HOST_PTR,
N * sizeof(float), y.data(), &cl_status);
// set the size of cldenseVector;
gpuY.num_values = N;
if (cl_status != CL_SUCCESS )
{
std::cout << "Problem with allocating Y buffer on GPU\n " << std::endl;
}
gpuX.values = ::clCreateBuffer (context(), CL_MEM_READ_WRITE | CL_MEM_USE_HOST_PTR,
N * sizeof(float), x.data(), &cl_status);
// set the size of cldenseVector;
gpuX.num_values = N;
if (cl_status != CL_SUCCESS )
{
std::cout << "Problem with allocating X buffer on GPU\n " << std::endl;
}
/** Step 3. Init clSPARSE library **/
clsparseStatus status = clsparseSetup();
if (status != clsparseSuccess)
{
std::cout << "Problem with executing clsparseSetup()" << std::endl;
return -1;
}
// Create clsparseControl object
clsparseCreateResult createResult = clsparseCreateControl( queue( ) );
CLSPARSE_V( createResult.status, "Failed to create clsparse control" );
/** Step 4. Execute AXPY algorithm **/
status = cldenseSaxpy(&gpuY, &gpuAlpha, &gpuX, &gpuY, createResult.control );
if (status != clsparseSuccess)
{
std::cout << "Problem with execution of clsparse AXPY algorithm"
<< " error: [" << status << "]" << std::endl;
}
/** Step 5. Shutdown clSPARSE library & OpenCL **/
status = clsparseReleaseControl( createResult.control );
status = clsparseTeardown();
if (status != clsparseSuccess)
{
std::cerr << "Problem with executing clsparseTeardown()" << std::endl;
return -2;
}
// Get results back to the host
::clEnqueueReadBuffer(queue(), gpuY.values, CL_TRUE, 0, N * sizeof(float),
y.data(), 0, nullptr, nullptr);
std::cout << "Result data: " << std::endl;
for ( int i = 0; i < 5; i++)
{
std::cout << "\t" << i << " = " << y[i] << std::endl;
}
::clReleaseMemObject(gpuAlpha.value);
::clReleaseMemObject(gpuY.values);
gpuY.num_values = 0;
::clReleaseMemObject(gpuX.values);
gpuX.num_values = 0;
//OpenCL Wrapper automatically release allocated resources
std::cout << "Program completed" << std::endl;
return 0;
}