forked from MLGonzo/football_stats
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprocess_chunk.py
245 lines (217 loc) · 8.32 KB
/
process_chunk.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import warnings
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
import statsmodels.api as sm
import statsmodels.formula.api as smf
from scipy.optimize import minimize
from scipy.stats import poisson, skellam
from bettools import (calculate_ev_from_odds, calculate_poisson_match_outcomes,
generate_seasons, get_data)
# Suppress RuntimeWarnings
warnings.filterwarnings("ignore", category=RuntimeWarning)
pd.set_option("display.max_columns", None)
pd.set_option("display.width", None)
pd.options.mode.chained_assignment = None
def rho_correction(x, y, lambda_x, mu_y, rho):
if x == 0 and y == 0:
return 1 - (lambda_x * mu_y * rho)
elif x == 0 and y == 1:
return 1 + (lambda_x * rho)
elif x == 1 and y == 0:
return 1 + (mu_y * rho)
elif x == 1 and y == 1:
return 1 - rho
else:
return 1.0
def dc_log_like(x, y, alpha_x, beta_x, alpha_y, beta_y, rho, gamma):
lambda_x, mu_y = np.exp(alpha_x + beta_y + gamma), np.exp(alpha_y + beta_x)
return (
np.log(rho_correction(x, y, lambda_x, mu_y, rho))
+ np.log(poisson.pmf(x, lambda_x))
+ np.log(poisson.pmf(y, mu_y))
)
def solve_parameters_decay(
dataset,
xi=0.001,
debug=False,
init_vals=None,
options={"disp": True, "maxiter": 100},
constraints=[{"type": "eq", "fun": lambda x: sum(x[:20]) - 20}],
**kwargs,
):
teams = np.sort(dataset["HomeTeam"].unique())
# # check for no weirdness in dataset
# away_teams = np.sort(dataset['AwayTeam'].unique())
# if not np.array_equal(teams, away_teams):
# raise ValueError("something not right")
n_teams = len(teams)
if init_vals is None:
# random initialisation of model parameters
init_vals = np.concatenate(
(
np.random.uniform(0, 1, (n_teams)), # attack strength
np.random.uniform(0, -1, (n_teams)), # defence strength
np.array([0, 1.0]), # rho (score correction), gamma (home advantage)
)
)
def dc_log_like_decay(x, y, alpha_x, beta_x, alpha_y, beta_y, rho, gamma, t, xi=xi):
lambda_x, mu_y = np.exp(alpha_x + beta_y + gamma), np.exp(alpha_y + beta_x)
return np.exp(-xi * t) * (
np.log(rho_correction(x, y, lambda_x, mu_y, rho))
+ np.log(poisson.pmf(x, lambda_x))
+ np.log(poisson.pmf(y, mu_y))
)
def estimate_paramters(params):
score_coefs = dict(zip(teams, params[:n_teams]))
defend_coefs = dict(zip(teams, params[n_teams : (2 * n_teams)]))
rho, gamma = params[-2:]
log_like = [
dc_log_like_decay(
row.FTHG,
row.FTAG,
score_coefs[row.HomeTeam],
defend_coefs[row.HomeTeam],
score_coefs[row.AwayTeam],
defend_coefs[row.AwayTeam],
rho,
gamma,
row.time_diff,
xi=xi,
)
for row in dataset.itertuples()
]
return -sum(log_like)
opt_output = minimize(
estimate_paramters, init_vals, options=options, constraints=constraints
)
if debug:
# sort of hacky way to investigate the output of the optimisation process
return opt_output
else:
return dict(
zip(
["attack_" + team for team in teams]
+ ["defence_" + team for team in teams]
+ ["rho", "home_adv"],
opt_output.x,
)
)
def get_1x2_probs(match_score_matrix):
return dict(
{
"H": np.sum(np.tril(match_score_matrix, -1)),
"A": np.sum(np.triu(match_score_matrix, 1)),
"D": np.sum(np.diag(match_score_matrix)),
}
)
def build_temp_model(dataset, time_diff, xi=0.000, init_params=None):
test_dataset = dataset[
(
(dataset["time_diff"] <= time_diff)
& (dataset["time_diff"] >= (time_diff - 2))
)
]
if len(test_dataset) == 0:
return 0
train_dataset = dataset[dataset["time_diff"] > time_diff]
train_dataset["time_diff"] = train_dataset["time_diff"] - time_diff
params = solve_parameters_decay(train_dataset, xi=xi, init_vals=init_params)
predictive_score = sum(
[
np.log(
get_1x2_probs(
dixon_coles_simulate_match(params, row.HomeTeam, row.AwayTeam)
)[row.FTR]
)
for row in test_dataset.itertuples()
]
)
return predictive_score
def get_total_score_xi(xi):
xi_result = [build_temp_model(dc_df, day, xi=xi) for day in range(99, -1, -3)]
with open("find_xi_1season_{}.txt".format(str(xi)[2:]), "wb") as thefile:
pickle.dump(xi_result, thefile)
def calc_means(param_dict, homeTeam, awayTeam):
return [
np.exp(
param_dict["attack_" + homeTeam]
+ param_dict["defence_" + awayTeam]
+ param_dict["home_adv"]
),
np.exp(param_dict["defence_" + homeTeam] + param_dict["attack_" + awayTeam]),
]
def dixon_coles_simulate_match(params_dict, homeTeam, awayTeam, max_goals=10):
team_avgs = calc_means(params_dict, homeTeam, awayTeam)
team_pred = [
[poisson.pmf(i, team_avg) for i in range(0, max_goals + 1)]
for team_avg in team_avgs
]
output_matrix = np.outer(np.array(team_pred[0]), np.array(team_pred[1]))
correction_matrix = np.array(
[
[
rho_correction(
home_goals,
away_goals,
team_avgs[0],
team_avgs[1],
params_dict["rho"],
)
for away_goals in range(2)
]
for home_goals in range(2)
]
)
output_matrix[:2, :2] = output_matrix[:2, :2] * correction_matrix
return output_matrix
def process_chunk(chunk_args):
try:
data, train_start, train_end, test_size = chunk_args
# Assuming solve_parameters_decay, dixon_coles_simulate_match, and get_1x2_probs are defined elsewhere
# Prepare train and test data
train_data = data.iloc[train_start:train_end]
test_data = data.iloc[train_end : train_end + test_size]
# Your existing logic to process each chunk
max_train_date = train_data.index.max()
train_data["time_diff"] = (max_train_date - train_data.index).days
train_data = train_data[["HomeTeam", "AwayTeam", "FTHG", "FTAG", "time_diff"]]
successful_fit = False
attempts = 0
while not successful_fit and attempts < 5:
try:
params = solve_parameters_decay(train_data, xi=0.00325)
test_data = test_data.reset_index()
for i in range(len(test_data)):
home_team = test_data.loc[i]["HomeTeam"]
away_team = test_data.loc[i]["AwayTeam"]
probs_1x2 = get_1x2_probs(
dixon_coles_simulate_match(
params, home_team, away_team, max_goals=10
)
)
test_data.loc[i, "home_win_prob"] = probs_1x2["H"]
test_data.loc[i, "away_win_prob"] = probs_1x2["A"]
test_data.loc[i, "draw_win_prob"] = probs_1x2["D"]
successful_fit = True
except Exception as e:
print(
f"Parameter fitting failed on attempt {attempts + 1}: {e}. Trying with a larger training set."
)
attempts += 1
train_end += test_size
if train_end + test_size > len(data):
print(
"Not enough data to expand the training set and perform another test. Stopping."
)
return None
train_data = data.iloc[train_start:train_end]
train_data["time_diff"] = (max_train_date - train_data.index).days
train_data = train_data[
["HomeTeam", "AwayTeam", "FTHG", "FTAG", "time_diff"]
]
except Exception as e:
print(f"Error processing chunk: {e}")
return None # Or handle the exception as appropriate
return test_data