forked from allanzelener/YAD2K
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathyad2k.py
executable file
·270 lines (231 loc) · 10.3 KB
/
yad2k.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
#! /usr/bin/env python
"""
Reads Darknet19 config and weights and creates Keras model with TF backend.
Currently only supports layers in Darknet19 config.
"""
import argparse
import configparser
import io
import os
from collections import defaultdict
import numpy as np
from keras import backend as K
from keras.layers import (Conv2D, GlobalAveragePooling2D, Input, Lambda,
MaxPooling2D)
from keras.layers.advanced_activations import LeakyReLU
from keras.layers.merge import concatenate
from keras.layers.normalization import BatchNormalization
from keras.models import Model
from keras.regularizers import l2
from keras.utils.vis_utils import plot_model as plot
from yad2k.models.keras_yolo import (space_to_depth_x2,
space_to_depth_x2_output_shape)
parser = argparse.ArgumentParser(
description='Yet Another Darknet To Keras Converter.')
parser.add_argument('config_path', help='Path to Darknet cfg file.')
parser.add_argument('weights_path', help='Path to Darknet weights file.')
parser.add_argument('output_path', help='Path to output Keras model file.')
parser.add_argument(
'-p',
'--plot_model',
help='Plot generated Keras model and save as image.',
action='store_true')
parser.add_argument(
'-flcl',
'--fully_convolutional',
help='Model is fully convolutional so set input shape to (None, None, 3). '
'WARNING: This experimental option does not work properly for YOLO_v2.',
action='store_true')
def unique_config_sections(config_file):
"""Convert all config sections to have unique names.
Adds unique suffixes to config sections for compability with configparser.
"""
section_counters = defaultdict(int)
output_stream = io.StringIO()
with open(config_file) as fin:
for line in fin:
if line.startswith('['):
section = line.strip().strip('[]')
_section = section + '_' + str(section_counters[section])
section_counters[section] += 1
line = line.replace(section, _section)
output_stream.write(line)
output_stream.seek(0)
return output_stream
# %%
def _main(args):
config_path = os.path.expanduser(args.config_path)
weights_path = os.path.expanduser(args.weights_path)
assert config_path.endswith('.cfg'), '{} is not a .cfg file'.format(
config_path)
assert weights_path.endswith(
'.weights'), '{} is not a .weights file'.format(weights_path)
output_path = os.path.expanduser(args.output_path)
assert output_path.endswith(
'.h5'), 'output path {} is not a .h5 file'.format(output_path)
output_root = os.path.splitext(output_path)[0]
# Load weights and config.
print('Loading weights.')
weights_file = open(weights_path, 'rb')
weights_header = np.ndarray(
shape=(4, ), dtype='int32', buffer=weights_file.read(16))
print('Weights Header: ', weights_header)
# TODO: Check transpose flag when implementing fully connected layers.
# transpose = (weight_header[0] > 1000) or (weight_header[1] > 1000)
print('Parsing Darknet config.')
unique_config_file = unique_config_sections(config_path)
cfg_parser = configparser.ConfigParser()
cfg_parser.read_file(unique_config_file)
print('Creating Keras model.')
if args.fully_convolutional:
image_height, image_width = None, None
else:
image_height = int(cfg_parser['net_0']['height'])
image_width = int(cfg_parser['net_0']['width'])
prev_layer = Input(shape=(image_height, image_width, 3))
all_layers = [prev_layer]
weight_decay = float(cfg_parser['net_0']['decay']
) if 'net_0' in cfg_parser.sections() else 5e-4
count = 0
for section in cfg_parser.sections():
print('Parsing section {}'.format(section))
if section.startswith('convolutional'):
filters = int(cfg_parser[section]['filters'])
size = int(cfg_parser[section]['size'])
stride = int(cfg_parser[section]['stride'])
pad = int(cfg_parser[section]['pad'])
activation = cfg_parser[section]['activation']
batch_normalize = 'batch_normalize' in cfg_parser[section]
# padding='same' is equivalent to Darknet pad=1
padding = 'same' if pad == 1 else 'valid'
# Setting weights.
# Darknet serializes convolutional weights as:
# [bias/beta, [gamma, mean, variance], conv_weights]
prev_layer_shape = K.int_shape(prev_layer)
# TODO: This assumes channel last dim_ordering.
weights_shape = (size, size, prev_layer_shape[-1], filters)
darknet_w_shape = (filters, weights_shape[2], size, size)
weights_size = np.product(weights_shape)
print('conv2d', 'bn'
if batch_normalize else ' ', activation, weights_shape)
conv_bias = np.ndarray(
shape=(filters, ),
dtype='float32',
buffer=weights_file.read(filters * 4))
count += filters
if batch_normalize:
bn_weights = np.ndarray(
shape=(3, filters),
dtype='float32',
buffer=weights_file.read(filters * 12))
count += 3 * filters
# TODO: Keras BatchNormalization mistakenly refers to var
# as std.
bn_weight_list = [
bn_weights[0], # scale gamma
conv_bias, # shift beta
bn_weights[1], # running mean
bn_weights[2] # running var
]
conv_weights = np.ndarray(
shape=darknet_w_shape,
dtype='float32',
buffer=weights_file.read(weights_size * 4))
count += weights_size
# DarkNet conv_weights are serialized Caffe-style:
# (out_dim, in_dim, height, width)
# We would like to set these to Tensorflow order:
# (height, width, in_dim, out_dim)
# TODO: Add check for Theano dim ordering.
conv_weights = np.transpose(conv_weights, [2, 3, 1, 0])
conv_weights = [conv_weights] if batch_normalize else [
conv_weights, conv_bias
]
# Handle activation.
act_fn = None
if activation == 'leaky':
pass # Add advanced activation later.
elif activation != 'linear':
raise ValueError(
'Unknown activation function `{}` in section {}'.format(
activation, section))
# Create Conv2D layer
conv_layer = (Conv2D(
filters, (size, size),
strides=(stride, stride),
kernel_regularizer=l2(weight_decay),
use_bias=not batch_normalize,
weights=conv_weights,
activation=act_fn,
padding=padding))(prev_layer)
if batch_normalize:
conv_layer = (BatchNormalization(
weights=bn_weight_list))(conv_layer)
prev_layer = conv_layer
if activation == 'linear':
all_layers.append(prev_layer)
elif activation == 'leaky':
act_layer = LeakyReLU(alpha=0.1)(prev_layer)
prev_layer = act_layer
all_layers.append(act_layer)
elif section.startswith('maxpool'):
size = int(cfg_parser[section]['size'])
stride = int(cfg_parser[section]['stride'])
all_layers.append(
MaxPooling2D(
padding='same',
pool_size=(size, size),
strides=(stride, stride))(prev_layer))
prev_layer = all_layers[-1]
elif section.startswith('avgpool'):
if cfg_parser.items(section) != []:
raise ValueError('{} with params unsupported.'.format(section))
all_layers.append(GlobalAveragePooling2D()(prev_layer))
prev_layer = all_layers[-1]
elif section.startswith('route'):
ids = [int(i) for i in cfg_parser[section]['layers'].split(',')]
layers = [all_layers[i] for i in ids]
if len(layers) > 1:
print('Concatenating route layers:', layers)
concatenate_layer = concatenate(layers)
all_layers.append(concatenate_layer)
prev_layer = concatenate_layer
else:
skip_layer = layers[0] # only one layer to route
all_layers.append(skip_layer)
prev_layer = skip_layer
elif section.startswith('reorg'):
block_size = int(cfg_parser[section]['stride'])
assert block_size == 2, 'Only reorg with stride 2 supported.'
all_layers.append(
Lambda(
space_to_depth_x2,
output_shape=space_to_depth_x2_output_shape,
name='space_to_depth_x2')(prev_layer))
prev_layer = all_layers[-1]
elif section.startswith('region'):
with open('{}_anchors.txt'.format(output_root), 'w') as f:
print(cfg_parser[section]['anchors'], file=f)
elif (section.startswith('net') or section.startswith('cost') or
section.startswith('softmax')):
pass # Configs not currently handled during model definition.
else:
raise ValueError(
'Unsupported section header type: {}'.format(section))
# Create and save model.
model = Model(inputs=all_layers[0], outputs=all_layers[-1])
print(model.summary())
model.save('{}'.format(output_path))
print('Saved Keras model to {}'.format(output_path))
# Check to see if all weights have been read.
remaining_weights = len(weights_file.read()) / 4
weights_file.close()
print('Read {} of {} from Darknet weights.'.format(count, count +
remaining_weights))
if remaining_weights > 0:
print('Warning: {} unused weights'.format(remaining_weights))
if args.plot_model:
plot(model, to_file='{}.png'.format(output_root), show_shapes=True)
print('Saved model plot to {}.png'.format(output_root))
if __name__ == '__main__':
_main(parser.parse_args())