-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathtesting.py
219 lines (175 loc) · 7.89 KB
/
testing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import copy as cp
import time
import pickle
from scipy.special import expit
import sys
import os
sys.path.insert(0, os.path.abspath('../'))
from Utils.eval_helper import *
from Utils.iohelper import *
from Detector.eval_GANG import *
from Detector.eval_Fraudar import *
from Detector.eval_SpEagle import *
from Detector.eval_fBox import *
from nash_detect import compute_re, load_fake_reviews, remove_topk_reviews, e_greedy_sample
"""
Testing all detectors (Figure 4 in paper)
"""
def testing_detectors(upg, pug, added_reviews, detectors_q, top_k_per, detector='GANG'):
"""
Run detectors on all reviews plus added fake reviews.
Return the aggregated review posterior beliefs and top_k suspicious reviews
"""
spammer_ids = []
for review in added_reviews:
if review[0] not in spammer_ids:
spammer_ids.append(review[0])
u_p_graph, p_u_graph = cp.deepcopy(upg), cp.deepcopy(pug)
new_priors, u_p_graph, p_u_graph, user_ground_truth, review_ground_truth, _ = add_adversarial_review(
u_p_graph, p_u_graph, added_reviews)
if detector == 'GANG':
print('Run {} ...'.format(detector))
# get posteriors from GANG
gang_model, _ = runGANG(new_priors, u_p_graph, p_u_graph, user_ground_truth)
gang_ubelief, _, rbelief = gang_model.classify()
elif detector == 'SpEagle':
print('Run {} ...'.format(detector))
# get posteriors from SpEagle
speagle_model = runSpEagle(new_priors, u_p_graph)
speagle_ubelief, rbelief, _ = speagle_model.classify()
elif detector == 'Fraudar':
print('Run {} ...'.format(detector))
# get posteriors from Fraudar
fraudar_ubelief, rbelief = runFraudar(new_priors, u_p_graph)
elif detector == 'fBox':
print('Run {} ...'.format(detector))
# get posteriors from fBox
fbox_ubelief, rbelief = runfBox(new_priors, u_p_graph)
elif detector == 'Prior':
print('Run {} ...'.format(detector))
# get posteriors from Prior
prior_ubelief, rbelief = new_priors[0], new_priors[1]
else:
# run Nash-Detect or Equal-Weights
print('Run {} ...'.format(detector))
gang_model, _ = runGANG(new_priors, u_p_graph, p_u_graph, user_ground_truth)
gang_ubelief, _, gang_rbelief = gang_model.classify()
speagle_model = runSpEagle(new_priors, u_p_graph)
speagle_ubelief, speagle_rbelief, _ = speagle_model.classify()
fraudar_ubelief, fraudar_rbelief = runFraudar(new_priors, u_p_graph)
fbox_ubelief, fbox_rbelief = runfBox(new_priors, u_p_graph)
prior_ubelief, prior_rbelief = new_priors[0], new_priors[1]
print('Compute Posterior ...')
if detector == 'Nash-Detect' or detector == 'Equal-Weights':
# normalize the output
speagle_rbelief, fraudar_rbelief, fbox_rbelief, prior_rbelief = scale_value(speagle_rbelief), scale_value(
fraudar_rbelief), scale_value(fbox_rbelief), scale_value(prior_rbelief)
# weight of each detector
gang_q, speagle_q, fraudar_q, fbox_q, prior_q = detectors_q['GANG'], detectors_q['SpEagle'], detectors_q['Fraudar'], \
detectors_q['fBox'], detectors_q['Prior']
# compute aggregated review posteriors
r_spam_beliefs = {}
if detector == 'Nash-Detect':
for r in gang_rbelief.keys():
accu_spam_belief = 0.0
accu_spam_belief += gang_q * gang_rbelief[r]
accu_spam_belief += speagle_q * speagle_rbelief[r]
accu_spam_belief += fraudar_q * fraudar_rbelief[r]
accu_spam_belief += fbox_q * fbox_rbelief[r]
accu_spam_belief += prior_q * prior_rbelief[r]
r_spam_beliefs[r] = expit(accu_spam_belief)
else:
for r in gang_rbelief.keys():
accu_spam_belief = gang_rbelief[r] + speagle_rbelief[r] + fraudar_rbelief[r] + fbox_rbelief[r] + prior_rbelief[r]
r_spam_beliefs[r] = expit(accu_spam_belief)
else:
r_spam_beliefs = scale_value(rbelief)
# rank the top_k suspicious reviews
ranked_rbeliefs = [(review, r_spam_beliefs[review]) for review in r_spam_beliefs.keys()]
ranked_rbeliefs = sorted(ranked_rbeliefs, reverse=True, key=lambda x: x[1])
top_k = int(len(r_spam_beliefs) * top_k_per)
top_k_reviews = [review[0] for review in ranked_rbeliefs[:top_k]]
# remove false positives
for review in top_k_reviews:
if review not in added_reviews:
top_k_reviews.remove(review)
print('top k is {}'.format(len(top_k_reviews)))
return r_spam_beliefs, top_k_reviews, p_u_graph
if __name__ == '__main__':
# load metadata and attack defense data
dataset_name = 'YelpChi' # YelpChi, YelpNYC, YelpZip
prefix = 'Yelp_Dataset/' + dataset_name + '/'
elite = 10 # elite threshold
top_k = 0.01 # filtering threshold for detector
epsilon = 0.1 # epsilon-greedy sampling parameter
lr1_dict = {'YelpChi': 30, 'YelpNYC': 40, 'YelpZip': 48}
lr1 = lr1_dict[dataset_name] # learning rate for detector importance
lr2 = 0.01 # learning rate for spamming mixture parameter
iters = 10 # running iterations
testing_detector = 'Equal-Weights' # Equal-Weights, Nash-Detect, Fraudar, SpEagle, GANG, Prior, fBox,
attacks = ['IncBP', 'IncDS', 'IncPR', 'Random', 'Singleton']
detectors = ['GANG', 'Prior', 'SpEagle', 'fBox', 'Fraudar']
setting1 = 'Testing/' + dataset_name + '/IncBP.pickle'
setting2 = 'Testing/' + dataset_name + '/IncDS.pickle'
setting3 = 'Testing/' + dataset_name + '/Random.pickle'
setting4 = 'Testing/' + dataset_name + '/IncPR.pickle'
setting5 = 'Testing/' + dataset_name + '/Singleton.pickle'
paths = {'IncBP': setting1, 'IncDS': setting2, 'Random': setting3, 'IncPR': setting4,
'Singleton': setting5}
metadata_filename = prefix + 'metadata.gz'
user_product_graph, prod_user_graph = read_graph_data(metadata_filename)
with open(setting1, 'rb') as f:
evasions = pickle.load(f)
targets = evasions[1]
# load fake reviews for each attack to each target item
item_attack_review = load_fake_reviews(attacks, targets, paths)
# select elite accounts
elite_accounts = select_elite(user_product_graph, threshold=elite)
with open(paths['IncDS'], 'rb') as f:
evasions = pickle.load(f)
# initialize P and Q
attacks_p = {}
optimal_q = {'YelpChi': {'GANG': 1.61, 'Prior': 0.60, 'SpEagle': 0.21, 'fBox': 0.40, 'Fraudar': 2.22},
'YelpNYC': {'GANG': 2.47, 'Prior': 0.69, 'SpEagle': 0.21, 'fBox': 0.43, 'Fraudar': 2.00},
'YelpZip': {'GANG': 2.58, 'Prior': 0.66, 'SpEagle': 0.20, 'fBox': 0.36, 'Fraudar': 1.94}}
detectors_q = optimal_q[dataset_name]
# uniformly initialization
for a in attacks:
attacks_p[a] = 1 / len(attacks)
# initialize loggers
posted_reviews = {}
item_attack_mapping = {}
attack_log = {a: [] for a in attacks_p.keys()}
pe_log, return_log = [], []
init_time = time.time()
# start attacks and defenses
for i in range(iters):
print('run detector {} on dataset {}, iteration is {}.'.format(testing_detector, dataset_name, i))
posted_reviews[i] = []
item_attack_mapping[i] = {}
# generate fake reviews for each item
for item in targets:
attack = e_greedy_sample(attacks_p, epsilon)
item_attack_mapping[i][item] = attack
reviews = item_attack_review[item][attack]
posted_reviews[i] += reviews
# run all detectors on all reviews and added reviews
r_spam_beliefs, top_k_reviews, new_prod_user_graph = testing_detectors(user_product_graph, prod_user_graph, posted_reviews[i], detectors_q, top_k, detector=testing_detector)
# remove the top_k reviews and calculate the practical effect
print('Compute original Revenue ...')
ori_RI, ori_ERI, ori_Revenue = compute_re(prod_user_graph, targets, elite_accounts)
remain_product_user_graph = remove_topk_reviews(new_prod_user_graph, top_k_reviews)
print('Compute new Revenue ...')
new_RI, new_ERI, new_Revenue = compute_re(remain_product_user_graph, targets, elite_accounts)
# calculate total practical effect
total_pe = sum([new_Revenue[t] - ori_Revenue[t] for t in targets])
print('Total PE is {}'.format(total_pe))
# logging
pe_log.append(total_pe)
new_time = time.time()
print('\nTime cost is for iteration {} is {}.\n'.format(i, new_time - init_time))
init_time = new_time
print(pe_log)
print('Avg PE is {}'.format(sum(pe_log) / len(pe_log)))
print('Max PE is {}'.format(max(pe_log)))
print('Min PE is {}'.format(min(pe_log)))