-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate.py
68 lines (54 loc) · 1.84 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import re
import args
import json
import logging
from tqdm import tqdm
from typing import Dict
from datasets import Dataset
def extract_options(text):
pattern = r'\b[A-Z](?:, [A-Z])*\b'
match = re.search(pattern, text)
if match:
return match.group()
else:
logging.warning("提取选项失败!")
return None
def verdict_accuracy(data: Dict, save: bool = False):
score = []
for idx, values in enumerate(zip(*data.values())):
answer, ground_truth = None, None
for k, v in zip(data.keys(), values):
if k == "answer": answer = extract_options(v)
if k == "ground_truth": ground_truth = extract_options(v)
if answer == ground_truth:
score.append(1)
else:
score.append(0)
print(f"Acc: {sum(score) / len(score)}")
if save:
data["acc"] = score
dataset = Dataset.from_dict(data)
dataset.to_csv(args.output_filename)
def eval(chain, retriever):
data = {}
contexts = []
answer = []
with open(args.eval_filename, 'r', encoding='utf-8') as f:
data = json.loads(f.read())
tot_number = len(data['question'])
# 实验:取k条
exm = {}
k = args.eval_k
exm['question'] = data['question'][:k]
exm['ground_truth'] = data['ground_truth'][:k]
data = exm
for query in tqdm(data["question"]):
cxt = retriever.invoke(query)
contexts.append([doc.page_content for doc in cxt])
response = chain.invoke({"context": cxt, "query": query})
answer.append(response.strip())
data["answer"] = answer
data["contexts"] = contexts
logging.basicConfig(filename=args.logfile, level=logging.WARNING,
format="%(asctime)s - %(levelname)s - %(message)s")
verdict_accuracy(data, args.save_output)