-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathdeploy_yolov8.py
893 lines (758 loc) · 37.6 KB
/
deploy_yolov8.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
# Ultralytics YOLO 🚀, AGPL-3.0 license
import argparse
import os
import cv2 as cv
import sys
import time
import onnx
import numpy as np
import onnxruntime as ort
from openvino.runtime import Core
class YOLOv8_ONNX:
"""YOLOv8 object detection model class for handling inference and visualization."""
def __init__(self, onnx_model, input_image, confidence_thres, iou_thres):
"""
Initializes an instance of the YOLOv8 class.
Args:
onnx_model: Path to the ONNX model.
input_image: Path to the input image.
confidence_thres: Confidence threshold for filtering detections.
iou_thres: IoU (Intersection over Union) threshold for non-maximum suppression.
"""
self.onnx_model = onnx_model
self.input_image = input_image
self.confidence_thres = confidence_thres
self.iou_thres = iou_thres
# Load the class names from the COCO dataset
# self.classes = self.get_classes('z_class.txt')
self.classes = ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
'hair drier', 'toothbrush']
# Generate a color palette for the classes
self.color_palette = np.random.uniform(0, 255, size=(len(self.classes), 3))
# 检查onnx模型并初始化onnx
onnx_model = onnx.load(self.onnx_model)
try:
onnx.checker.check_model(onnx_model)
except Exception:
print("Model incorrect")
else:
print("Model correct")
self.onnx_session = ort.InferenceSession(self.onnx_model)
# Get the model inputs
self.model_inputs = self.onnx_session.get_inputs()
def get_classes(self, classes_path):
with open(classes_path, encoding='utf-8') as f:
class_names = f.readlines()
class_names = [c.strip() for c in class_names]
return class_names
def draw_detections(self, img, box, score, class_id):
"""
Draws bounding boxes and labels on the input image based on the detected objects.
Args:
img: The input image to draw detections on.
box: Detected bounding box.
score: Corresponding detection score.
class_id: Class ID for the detected object.
Returns:
None
"""
# Extract the coordinates of the bounding box
x1, y1, w, h = box
# Retrieve the color for the class ID
color = self.color_palette[class_id]
# Draw the bounding box on the image
cv.rectangle(img, (int(x1), int(y1)), (int(x1 + w), int(y1 + h)), color, 2)
# Create the label text with class name and score
label = f"{self.classes[class_id]}: {score:.2f}"
# Calculate the dimensions of the label text
(label_width, label_height), _ = cv.getTextSize(label, cv.FONT_HERSHEY_SIMPLEX, 0.5, 1)
# Calculate the position of the label text
label_x = x1
label_y = y1 - 10 if y1 - 10 > label_height else y1 + 10
# Draw a filled rectangle as the background for the label text
cv.rectangle(
img, (label_x, label_y - label_height), (label_x + label_width, label_y + label_height), color, cv.FILLED
)
# Draw the label text on the image
cv.putText(img, label, (label_x, label_y), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), 1, cv.LINE_AA)
def preprocess(self, frame=None):
"""
Preprocesses the input image before performing inference.
Returns:
image_data: Preprocessed image data ready for inference.
"""
# Read the input image using OpenCV
# t_pre = time.time()
if frame is None:
self.img = cv.imread(self.input_image)
else:
self.img = frame
# Get the height and width of the input image
self.img_height, self.img_width = self.img.shape[:2]
# Resize the image to match the input shape
# img = cv.resize(img, (self.input_width, self.input_height))
img = letterbox(self.img)[0] # 修改此处为self.img,则保存的为缩略图大小;此处为img则保存的为原图大小
# Convert the image color space from BGR to RGB
img = cv.cvtColor(img, cv.COLOR_BGR2RGB)
# Normalize the image data by dividing it by 255.0
image_data = np.array(img) / 255.0
# Transpose the image to have the channel dimension as the first dimension
image_data = np.transpose(image_data, (2, 0, 1)) # Channel first
# Expand the dimensions of the image data to match the expected input shape
image_data = np.expand_dims(image_data, axis=0).astype(np.float32)
# print("预处理时间", time.time() - t_pre)
# Return the preprocessed image data
return image_data
def postprocess_(self,input_image, output): # 使用该方法比postprocess_方法处理速度更快,主要优化了boxes、scores、class_ids初始化部分
t_post = time.time()
# Transpose and squeeze the output to match the expected shape
tx = time.time()
outputs = np.transpose(np.squeeze(output[0]))
ty = time.time()
print("trans time", ty - tx)
# Get the number of rows in the outputs array
# rows = outputs.shape[0]
# Lists to store the bounding boxes, scores, and class IDs of the detections
# boxes = []
# scores = []
# class_ids = []
boxes = outputs[:, :4].tolist()
scores = np.max(outputs[:, 4:], axis=1).tolist()
class_ids = np.argmax(outputs[:, 4:], axis=1).tolist()
# Calculate the scaling factors for the bounding box coordinates
x_factor = self.img_width / self.input_width
y_factor = self.img_height / self.input_height
# Iterate over each row in the outputs array
'''
for i in range(rows):
# Extract the class scores from the current row
classes_scores = outputs[i][4:]
# Find the maximum score among the class scores
max_score = np.amax(classes_scores)
# If the maximum score is above the confidence threshold
if max_score >= self.confidence_thres:
# Get the class ID with the highest score
class_id = np.argmax(classes_scores)
# Extract the bounding box coordinates from the current row
x, y, w, h = outputs[i][0], outputs[i][1], outputs[i][2], outputs[i][3]
# Calculate the scaled coordinates of the bounding box
left = int((x - w / 2) )
top = int((y - h / 2) )
width = int(w)
height = int(h)
# Add the class ID, score, and box coordinates to the respective lists
class_ids.append(class_id)
scores.append(max_score)
boxes.append([left, top, width, height])
'''
tz = time.time()
print("for time", tz - ty)
# Apply non-maximum suppression to filter out overlapping bounding boxes
indices = cv.dnn.NMSBoxes(boxes, scores, self.confidence_thres, self.iou_thres)
ta = time.time()
print("trans time", ta - tz)
# Iterate over the selected indices after non-maximum suppression
for i in indices:
# Get the box, score, and class ID corresponding to the index
box = boxes[i]
x, y, w, h = box[0], box[1], box[2], box[3]
box[0] = int((x - w / 2)*x_factor)
box[1] = int((y - h / 2)*y_factor)
box[2] = int(w*x_factor)
box[3] = int(h*y_factor)
score = scores[i]
class_id = class_ids[i]
# Draw the detection on the input image
self.draw_detections(input_image, box, score, class_id)
print("trans time", time.time() - ta)
print("后处理时间", time.time() - t_post)
# Return the modified input image
return input_image
def postprocess__(self,input_image, output): # 使用该方法比postprocess方法处理速度更快,主要优化了for循环部分
# t_post = time.time()
# Transpose and squeeze the output to match the expected shape
# tx = time.time()
outputs = np.transpose(np.squeeze(output[0]))
# ty = time.time()
# print("trans time", ty - tx)
# Get the number of rows in the outputs array
# rows = outputs.shape[0]
# ----------------------------------------------新方法,提速!
scores = np.max(outputs[:, 4:], axis=1)
predictions = outputs[scores > self.confidence_thres, :]
scores = scores[scores > self.confidence_thres].tolist()
if len(scores) == 0:
return [], [], []
# Get the class with the highest confidence
class_ids = np.argmax(predictions[:, 4:], axis=1).tolist()
# Get bounding boxes for each object
# boxes = self.extract_boxes(predictions)
boxes = predictions[:, :4].tolist()
# -----------------------------------------------
# Calculate the scaling factors for the bounding box coordinates
x_factor = self.img_width / self.input_width
y_factor = self.img_height / self.input_height
# print(x_factor,y_factor)
# Iterate over each row in the outputs array
# tz = time.time()
# print("for time", tz - ty)
# Apply non-maximum suppression to filter out overlapping bounding boxes
indices = cv.dnn.NMSBoxes(boxes, scores, self.confidence_thres, self.iou_thres)
# ta = time.time()
# print("trans time", ta - tz)
# Iterate over the selected indices after non-maximum suppression
for i in indices:
# Get the box, score, and class ID corresponding to the index
box = boxes[i]
x, y, w, h = box[0], box[1], box[2], box[3]
box[0] = int((x - w / 2)*x_factor)
box[1] = int((y - h / 2)*y_factor)
box[2] = int(w*x_factor)
box[3] = int(h*y_factor)
score = scores[i]
class_id = class_ids[i]
# Draw the detection on the input image
self.draw_detections(input_image, box, score, class_id)
# print("trans time", time.time() - ta)
# print("后处理时间", time.time() - t_post)
# Return the modified input image
return input_image
def main(self, frame=None):
"""
Performs inference using an ONNX model and returns the output image with drawn detections.
Returns:
output_img: The output image with drawn detections.
"""
# Create an inference session using the ONNX model and specify execution providers
# session = ort.InferenceSession(self.onnx_model, providers=["CUDAExecutionProvider", "CPUExecutionProvider"])
# Store the shape of the input for later use
# input_shape = model_inputs[0].shape
# self.input_width = input_shape[2] # 640->width
# self.input_height = input_shape[3] # 640->with
# Preprocess the image data
if frame is None:
img_data = self.preprocess()
else :
img_data = self.preprocess(frame)
self.input_height, self.input_width = img_data.shape[2:]
# Run inference using the preprocessed image data
# t_run = time.time()
outputs = self.onnx_session.run(None, {self.model_inputs[0].name: img_data})
# print("推理时间", time.time() - t_run)
# Perform post-processing on the outputs to obtain output image.
# return self.postprocess_(self.img, outputs) # output image
# return self.postprocess_(self.img, outputs) # output image
return self.postprocess__(self.img, outputs) # output image
class YOLOv8_VINO:
"""YOLOv8 object detection model class for handling inference and visualization."""
def __init__(self, vino_model, input_image, confidence_thres, iou_thres):
"""
Initializes an instance of the YOLOv8 class.
Args:
vino_model: Path to the VINO model.
input_image: Path to the input image.
confidence_thres: Confidence threshold for filtering detections.
iou_thres: IoU (Intersection over Union) threshold for non-maximum suppression.
"""
self.vino_model = vino_model
self.input_image = input_image
self.confidence_thres = confidence_thres
self.iou_thres = iou_thres
# Load the class names from the COCO dataset
# self.classes = self.get_classes('z_class.txt')
self.classes = ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
'hair drier', 'toothbrush']
# Generate a color palette for the classes
self.color_palette = np.random.uniform(0, 255, size=(len(self.classes), 3))
# 初始化
self.core = Core()
'''
# 获取设备信息
devices = self.core.available_devices
for device in devices:
device_name = self.core.get_property(device, "FULL_DEVICE_NAME")
print(f"{device}: {device_name}")
'''
# 加载模型 load the openvino IR model
self.model = self.core.read_model(model=self.vino_model)
self.compiled_model = self.core.compile_model(model=self.model, device_name="CPU") # 设备自动选择
# self.input_layer = self.compiled_model.inputs[0]
self.output_layer = self.compiled_model.outputs[0]
# print(self.input_layer)
# print(self.output_layer)
# 读取类别
def get_classes(self, classes_path):
with open(classes_path, encoding='utf-8') as f:
class_names = f.readlines()
class_names = [c.strip() for c in class_names]
return class_names
def draw_detections(self, img, box, score, class_id):
"""
Draws bounding boxes and labels on the input image based on the detected objects.
Args:
img: The input image to draw detections on.
box: Detected bounding box.
score: Corresponding detection score.
class_id: Class ID for the detected object.
Returns:
None
"""
# Extract the coordinates of the bounding box
x1, y1, w, h = box
# Retrieve the color for the class ID
color = self.color_palette[class_id]
# Draw the bounding box on the image
cv.rectangle(img, (int(x1), int(y1)), (int(x1 + w), int(y1 + h)), color, 2)
# Create the label text with class name and score
label = f"{self.classes[class_id]}: {score:.2f}"
# Calculate the dimensions of the label text
(label_width, label_height), _ = cv.getTextSize(label, cv.FONT_HERSHEY_SIMPLEX, 0.5, 1)
# Calculate the position of the label text
label_x = x1
label_y = y1 - 10 if y1 - 10 > label_height else y1 + 10
# Draw a filled rectangle as the background for the label text
cv.rectangle(
img, (label_x, label_y - label_height), (label_x + label_width, label_y + label_height), color, cv.FILLED
)
# Draw the label text on the image
cv.putText(img, label, (label_x, label_y), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), 1, cv.LINE_AA)
def preprocess(self, frame=None):
"""
Preprocesses the input image before performing inference.
Returns:
image_data: Preprocessed image data ready for inference.
"""
# Read the input image using OpenCV
# t_pre = time.time()
if frame is None:
self.img = cv.imread(self.input_image)
else:
self.img = frame
# Get the height and width of the input image
self.img_height, self.img_width = self.img.shape[:2]
# Resize the image to match the input shape
# img = cv.resize(img, (self.input_width, self.input_height))
img = letterbox(self.img)[0] # 修改此处为self.img,则保存的为缩略图大小;此处为img则保存的为原图大小
# Convert the image color space from BGR to RGB
img = cv.cvtColor(img, cv.COLOR_BGR2RGB)
# Normalize the image data by dividing it by 255.0
image_data = np.array(img) / 255.0
# Transpose the image to have the channel dimension as the first dimension
image_data = np.transpose(image_data, (2, 0, 1)) # Channel first
# Expand the dimensions of the image data to match the expected input shape
image_data = np.expand_dims(image_data, axis=0).astype(np.float32)
# print("预处理时间", time.time() - t_pre)
# Return the preprocessed image data
return image_data
def postprocess_(self,input_image, output): # 使用该方法比postprocess_方法处理速度更快,主要优化了boxes、scores、class_ids初始化部分
t_post = time.time()
# Transpose and squeeze the output to match the expected shape
tx = time.time()
outputs = np.transpose(np.squeeze(output[0]))
ty = time.time()
print("trans time", ty - tx)
# Get the number of rows in the outputs array
# rows = outputs.shape[0]
# Lists to store the bounding boxes, scores, and class IDs of the detections
# boxes = []
# scores = []
# class_ids = []
boxes = outputs[:, :4].tolist()
scores = np.max(outputs[:, 4:], axis=1).tolist()
class_ids = np.argmax(outputs[:, 4:], axis=1).tolist()
# Calculate the scaling factors for the bounding box coordinates
x_factor = self.img_width / self.input_width
y_factor = self.img_height / self.input_height
# Iterate over each row in the outputs array
'''
for i in range(rows):
# Extract the class scores from the current row
classes_scores = outputs[i][4:]
# Find the maximum score among the class scores
max_score = np.amax(classes_scores)
# If the maximum score is above the confidence threshold
if max_score >= self.confidence_thres:
# Get the class ID with the highest score
class_id = np.argmax(classes_scores)
# Extract the bounding box coordinates from the current row
x, y, w, h = outputs[i][0], outputs[i][1], outputs[i][2], outputs[i][3]
# Calculate the scaled coordinates of the bounding box
left = int((x - w / 2) )
top = int((y - h / 2) )
width = int(w)
height = int(h)
# Add the class ID, score, and box coordinates to the respective lists
class_ids.append(class_id)
scores.append(max_score)
boxes.append([left, top, width, height])
'''
tz = time.time()
print("for time", tz - ty)
# Apply non-maximum suppression to filter out overlapping bounding boxes
indices = cv.dnn.NMSBoxes(boxes, scores, self.confidence_thres, self.iou_thres)
ta = time.time()
print("trans time", ta - tz)
# Iterate over the selected indices after non-maximum suppression
for i in indices:
# Get the box, score, and class ID corresponding to the index
box = boxes[i]
x, y, w, h = box[0], box[1], box[2], box[3]
box[0] = int((x - w / 2)*x_factor)
box[1] = int((y - h / 2)*y_factor)
box[2] = int(w*x_factor)
box[3] = int(h*y_factor)
score = scores[i]
class_id = class_ids[i]
# Draw the detection on the input image
self.draw_detections(input_image, box, score, class_id)
print("trans time", time.time() - ta)
print("后处理时间", time.time() - t_post)
# Return the modified input image
return input_image
def postprocess__(self,input_image, output): # 使用该方法比postprocess方法处理速度更快,主要优化了for循环部分
# t_post = time.time()
# Transpose and squeeze the output to match the expected shape
# tx = time.time()
outputs = np.transpose(np.squeeze(output[0]))
# ty = time.time()
# print("trans time", ty - tx)
# Get the number of rows in the outputs array
# rows = outputs.shape[0]
# ----------------------------------------------新方法,提速!
scores = np.max(outputs[:, 4:], axis=1)
predictions = outputs[scores > self.confidence_thres, :]
scores = scores[scores > self.confidence_thres].tolist()
if len(scores) == 0:
return [], [], []
# Get the class with the highest confidence
class_ids = np.argmax(predictions[:, 4:], axis=1).tolist()
# Get bounding boxes for each object
# boxes = self.extract_boxes(predictions)
boxes = predictions[:, :4].tolist()
# -----------------------------------------------
# Calculate the scaling factors for the bounding box coordinates
x_factor = self.img_width / self.input_width
y_factor = self.img_height / self.input_height
# print(x_factor,y_factor)
# Iterate over each row in the outputs array
# tz = time.time()
# print("for time", tz - ty)
# Apply non-maximum suppression to filter out overlapping bounding boxes
indices = cv.dnn.NMSBoxes(boxes, scores, self.confidence_thres, self.iou_thres)
# ta = time.time()
# print("trans time", ta - tz)
# Iterate over the selected indices after non-maximum suppression
for i in indices:
# Get the box, score, and class ID corresponding to the index
box = boxes[i]
x, y, w, h = box[0], box[1], box[2], box[3]
box[0] = int((x - w / 2)*x_factor)
box[1] = int((y - h / 2)*y_factor)
box[2] = int(w*x_factor)
box[3] = int(h*y_factor)
score = scores[i]
class_id = class_ids[i]
# Draw the detection on the input image
self.draw_detections(input_image, box, score, class_id)
# print("trans time", time.time() - ta)
# print("后处理时间", time.time() - t_post)
# Return the modified input image
return input_image
def main(self, frame=None):
"""
Performs inference using an VINO model and returns the output image with drawn detections.
Returns:
output_img: The output image with drawn detections.
"""
# Preprocess the image data
if frame is None:
img_data = self.preprocess()
else :
img_data = self.preprocess(frame)
self.input_height, self.input_width = img_data.shape[2:]
# Run inference using the preprocessed image data
# t_run = time.time()
outputs = self.compiled_model([img_data])[self.output_layer]
# print("推理时间", time.time() - t_run)
# Perform post-processing on the outputs to obtain output image.
# return self.postprocess_(self.img, outputs) # output image
# return self.postprocess_(self.img, outputs) # output image
return self.postprocess__(self.img, outputs) # output image
def letterbox(im, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True, stride=32):
# Resize and pad image while meeting stride-multiple constraints
shape = im.shape[:2] # current shape [height, width]
if isinstance(new_shape, int):
new_shape = (new_shape, new_shape)
# Scale ratio (new / old)
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
if not scaleup: # only scale down, do not scale up (for better val mAP)
r = min(r, 1.0)
# Compute padding
ratio = r, r # width, height ratios
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
if auto: # minimum rectangle
dw, dh = np.mod(dw, stride), np.mod(dh, stride) # wh padding
elif scaleFill: # stretch
dw, dh = 0.0, 0.0
new_unpad = (new_shape[1], new_shape[0])
ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios
dw /= 2 # divide padding into 2 sides
dh /= 2
if shape[::-1] != new_unpad: # resize
im = cv.resize(im, new_unpad, interpolation=cv.INTER_LINEAR)
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
im = cv.copyMakeBorder(im, top, bottom, left, right, cv.BORDER_CONSTANT, value=color) # add border
return im, ratio, (dw, dh)
def is_file_or_folder(path):
if os.path.isfile(path):
return "File"
elif os.path.isdir(path):
return "Folder"
else:
return "Not a valid path"
def is_image_file(file_path):
image_extensions = ['.png', '.jpg', '.jpeg', '.gif', '.bmp']
_, file_extension = os.path.splitext(file_path.lower())
return file_extension in image_extensions
def ONNX_img(args):
# Check the requirements and select the appropriate backend (CPU or GPU)
# check_requirements("onnxruntime-gpu" if torch.cuda.is_available() else "onnxruntime")
# Create an instance of the YOLOv8 class with the specified arguments
detection = YOLOv8_ONNX(args.onnx_path, args.img_path, args.conf_thres, args.iou_thres)
# t0 = time.time()
# Perform object detection and obtain the output image
output_image = detection.main()
# print("总时间", time.time() - t0)
# Display and Save the output image
# cv.namedWindow("Output", cv.WINDOW_NORMAL)
img_name = os.path.basename(args.img_path)
file_name, file_extension = os.path.splitext(img_name)
cv.imwrite('./runs/deploy/{}'.format(file_name+'_onnx'+file_extension), output_image)
cv.imshow("Output", output_image)
# Wait for a key press to exit
cv.waitKey(1000)
cv.destroyAllWindows()
def VINO_img(args):
# Create an instance of the YOLOv8 class with the specified arguments
detection = YOLOv8_VINO(args.vino_path, args.img_path, args.conf_thres, args.iou_thres)
# t0 = time.time()
# Perform object detection and obtain the output image
output_image = detection.main()
# print("总时间", time.time() - t0)
# Display and Save the output image
# cv.namedWindow("Output", cv.WINDOW_NORMAL)
img_name = os.path.basename(args.img_path)
file_name, file_extension = os.path.splitext(img_name)
cv.imwrite('./runs/deploy/{}'.format(file_name+'_vino'+file_extension), output_image)
cv.imshow("Output", output_image)
# Wait for a key press to exit
cv.waitKey(1000)
cv.destroyAllWindows()
# ONNX模型推理文件夹中的图片/单张图片,自动判断路径为图片/文件夹
def ONNX_foder_img(args):
# 判断 img_path 是文件还是文件夹
path_type = is_file_or_folder(args.img_path)
if path_type == "File": # 处理文件
if is_image_file(args.img_path): # 处理文件图片
print("Deal with Image File")
ONNX_img(args)
else:
print(f"{args.img_path} is not a valid image file.")
elif path_type == "Folder": # 处理文件夹
print("Deal With Folder")
image_files = [f for f in os.listdir(args.img_path) if f.lower().endswith(('.png', '.jpg', '.jpeg', '.gif', '.bmp'))]
if not image_files:
print(f"{args.img_path} 中没有图片文件。")
sys.exit(0)
path = args.img_path
for image_file in image_files:
args.img_path = os.path.join(path, image_file)
ONNX_img(args)
else:
print(f"{args.img_path} 不是一个有效的路径。")
sys.exit(0)
# VINO模型推理文件夹中的图片/单张图片,自动判断路径为图片/文件夹
def VINO_foder_img(args):
# 判断 img_path 是文件还是文件夹
path_type = is_file_or_folder(args.img_path)
if path_type == "File": # 处理文件
if is_image_file(args.img_path): # 处理文件图片
print("Deal with Image File")
VINO_img(args)
else:
print(f"{args.img_path} is not a valid image file.")
elif path_type == "Folder": # 处理文件夹
print("Deal With Folder")
image_files = [f for f in os.listdir(args.img_path) if f.lower().endswith(('.png', '.jpg', '.jpeg', '.gif', '.bmp'))]
if not image_files:
print(f"{args.img_path} 中没有图片文件。")
sys.exit(0)
path = args.img_path
for image_file in image_files:
args.img_path = os.path.join(path, image_file)
VINO_img(args)
else:
print(f"{args.img_path} 不是一个有效的路径。")
sys.exit(0)
def ONNX_video(args):
detection = YOLOv8_ONNX(args.onnx_path, args.img_path, args.conf_thres, args.iou_thres)
if args.img_path == "":
video = cv.VideoCapture(0) # 调用摄像头
video_save_path = './runs/deploy/camera_onnx.mp4'
else:
video = cv.VideoCapture(args.img_path) # 读取视频文件
base_name = os.path.basename(args.img_path)
file_name, file_extension = os.path.splitext(base_name)
video_save_path = './runs/deploy/' + file_name + '_onnx' + file_extension
# 保存结果使用
video_fps = int(round(video.get(cv.CAP_PROP_FPS)))
if video_save_path != "":
fourcc = cv.VideoWriter_fourcc(*'XVID')
size = (int(video.get(cv.CAP_PROP_FRAME_WIDTH)), int(video.get(cv.CAP_PROP_FRAME_HEIGHT)))
# size = (640,640)
# _, frame = video.read()
# size = (letterbox(frame)[0].shape[1], letterbox(frame)[0].shape[0])
# print(size)
out = cv.VideoWriter(video_save_path, fourcc, video_fps, size)
fps = 0.0
# 判断是否成功创建视频流
while video.isOpened():
t1 = time.time()
ret, frame = video.read()
if ret is True:
# frame = cv.flip(frame, 1) # 调用摄像头时使用
# --------------------------------------
output_image = detection.main(frame)
# print(output_image.shape)
# -------------------------------------------
fps = (fps + (1. / (time.time() - t1))) / 2
# print("fps= %.2f" % (fps))
output_image = cv.putText(output_image, "fps= %.2f" % (fps), (0, 40), cv.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
cv.imshow("Video", output_image)
if video_save_path != "": # 保存结果
out.write(output_image)
# 按下q退出
if cv.waitKey(1) & 0xFF == ord('q'):
break
else:
break
video.release() # 释放并关闭窗口
if video_save_path != "": # 保存结果
print("Save processed video to the path :" + video_save_path)
out.release()
cv.destroyAllWindows()
def VINO_video(args):
detection = YOLOv8_VINO(args.vino_path, args.img_path, args.conf_thres, args.iou_thres)
if args.img_path == "":
video = cv.VideoCapture(0) # 调用摄像头
video_save_path = './runs/deploy/camera_vino.mp4'
else:
video = cv.VideoCapture(args.img_path) # 读取视频文件
base_name = os.path.basename(args.img_path)
file_name, file_extension = os.path.splitext(base_name)
video_save_path = './runs/deploy/' + file_name + '_vino' + file_extension
# 保存结果使用
video_fps = int(round(video.get(cv.CAP_PROP_FPS)))
if video_save_path != "":
fourcc = cv.VideoWriter_fourcc(*'XVID')
size = (int(video.get(cv.CAP_PROP_FRAME_WIDTH)), int(video.get(cv.CAP_PROP_FRAME_HEIGHT)))
# size = (640,640)
# _, frame = video.read()
# size = (letterbox(frame)[0].shape[1], letterbox(frame)[0].shape[0])
# print(size)
out = cv.VideoWriter(video_save_path, fourcc, video_fps, size)
fps = 0.0
# 判断是否成功创建视频流
while video.isOpened():
t1 = time.time()
ret, frame = video.read()
if ret is True:
# frame = cv.flip(frame, 1) # 调用摄像头时使用
# --------------------------------------
output_image = detection.main(frame)
# print(output_image.shape)
# -------------------------------------------
fps = (fps + (1. / (time.time() - t1))) / 2
# print("fps= %.2f" % (fps))
output_image = cv.putText(output_image, "fps= %.2f" % (fps), (0, 40), cv.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
cv.imshow("Video", output_image)
if video_save_path != "": # 保存结果
out.write(output_image)
# 按下q退出
if cv.waitKey(1) & 0xFF == ord('q'):
break
else:
break
video.release() # 释放并关闭窗口
if video_save_path != "": # 保存结果
print("Save processed video to the path :" + video_save_path)
out.release()
cv.destroyAllWindows()
if __name__ == "__main__":
# Create an argument parser to handle command-line arguments
# 结果默认储存在./runs/deploy内
parser = argparse.ArgumentParser()
parser.add_argument("--content", type=str, default="video", help="image/folder/video") # 直接在这里修改任务
parser.add_argument("--onnx_path", type=str, default="yolov8s.onnx", help="Input your ONNX model.")
parser.add_argument("--vino_path", type=str, default="yolov8s_openvino_model/yolov8s.xml", help="Input your VINO model.")
parser.add_argument("--img_path", type=str, default='', help="image path/image folder/video path")
parser.add_argument("--conf-thres", type=float, default=0.5, help="Confidence threshold")
parser.add_argument("--iou-thres", type=float, default=0.5, help="NMS IoU threshold")
args = parser.parse_args()
# Demo
if args.content == 'image':
args.img_path = "ultralytics/assets/bus.jpg"
ONNX_img(args)
VINO_img(args)
elif args.content == 'folder':
args.img_path = "ultralytics/assets"
ONNX_foder_img(args)
VINO_foder_img(args)
elif args.content == 'video':
args.img_path = "/media/zency/SSD-Data/Dataset/test.mp4"
# args.img_path = ""
ONNX_video(args)
VINO_video(args)
else:
print("The content args is error!")
'''
# Yolov8 ONNX/VINO部署v2.0
# 在yolov8_example的基础上优化了后处理的部分,加快程序处理速度
# 本程序在ONNX部署的基础上添加了OpenVINO部署的程序
# 注:本程序在i9-12900K_CPU+RTX3090显卡机器上运行速度ONNX>Openvino,初步判定是硬件问题
Usage
# 注意使用前要注释部分Demo
# 1.ONNX
1.1.image
python main.py -- content image --onnx_path yolov8m.onnx --img_path ultralytics/assets/bus.jpg --conf-thres 0.5 --iou-thres 0.5
1.2.folder
python main.py -- content folder --onnx_path yolov8m.onnx --img_path ultralytics/assets --conf-thres 0.5 --iou-thres 0.5
1.3.video
python main.py -- content video --onnx_path yolov8m.onnx --img_path /media/zency/SSD-Data/Dataset/test.mp4 --conf-thres 0.5 --iou-thres 0.5
python main.py -- content video --onnx_path yolov8m.onnx --img_path "" --conf-thres 0.5 --iou-thres 0.5
# 2.ONNX
2.1.image
python main.py -- content image --vino_path yolov8m_openvino_model/yolov8m.xml --img_path ultralytics/assets/bus.jpg --conf-thres 0.5 --iou-thres 0.5
2.2.folder
python main.py -- content folder --vino_path yolov8m_openvino_model/yolov8m.xml --img_path ultralytics/assets --conf-thres 0.5 --iou-thres 0.5
2.3.video
python main.py -- content video --vino_path yolov8m_openvino_model/yolov8m.xml --img_path /media/zency/SSD-Data/Dataset/test.mp4 --conf-thres 0.5 --iou-thres 0.5
python main.py -- content video --vino_path yolov8m_openvino_model/yolov8m.xml --img_path "" --conf-thres 0.5 --iou-thres 0.5
参考链接https://cloud.tencent.com/developer/article/1981364?areaSource=102001.16&traceId=zs7OsuZd2sEX4KWUy-3mJ
'''