-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathmain.py
757 lines (699 loc) · 35.8 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
import sys
import time
import numpy as np
from PyQt5.QtCore import QTimer, Qt
from PyQt5.QtCore import *
from PyQt5.QtGui import *
from PyQt5.QtWidgets import *
import cv2 as cv
import os
from ui import Ui_Form
from deploy_yolov5 import Yolov5ONNX, Yolov5VINO, filter_box
from deploy_yolov8 import YOLOv8_ONNX, YOLOv8_VINO
from PyQt5.QtMultimedia import QMediaPlayer, QMediaContent
from PyQt5.QtMultimediaWidgets import QVideoWidget
envpath = '/home/zency/anaconda3/envs/qt/lib/python3.8/site-packages/cv2/qt/plugins/platforms'
os.environ['QT_QPA_PLATFORM_PLUGIN_PATH'] = envpath
# 界面v3.0版本
class MyForm(QWidget):
def __init__(self, title):
super(MyForm, self).__init__()
# 定义类内变量
self.model_path = 'yolov5m.onnx'
self.image_path = 'images/zidane.jpg'
self.video_path = None
self.cap = None
self.playing = False
self.play_end = False
self.Conf = 0.50
self.IoU = 0.50
self.other = 0
self.time = None
self.model_type = "Yolov5"
self.deploy_type = "ONNX"
self.data_type = "image"
self.camera = False
self.stop = False
# 初始化类内UI,并配置UI
self.ui = Ui_Form()
self.ui.setupUi(self)
self.setWindowTitle(title)
self.setWindowIcon(QIcon("images/logo_HFUT.png")) # 设置图标
self.ui.lineEdit_model.setText(self.model_path)
self.ui.lineEdit_image.setText(self.image_path)
self.ui.image_label.setSizePolicy(QSizePolicy.Expanding, QSizePolicy.Expanding)
self.ui.spin_conf.setValue(0.50)
self.ui.spin_conf.setRange(0.00,1.00)
self.ui.spin_conf.setSingleStep(0.01)
self.ui.spin_iou.setValue(0.50)
self.ui.spin_iou.setRange(0.00,1.00)
self.ui.spin_iou.setSingleStep(0.01)
# 配置定时器
self.timer = QTimer(self)
# 链接槽函数
self.ui.radioButton_6.toggled.connect(self.radioButton_deploy_state)
self.ui.radioButton_7.toggled.connect(self.radioButton_deploy_state)
self.ui.radioButton.toggled.connect(self.radioButton_model_state)
self.ui.radioButton_2.toggled.connect(self.radioButton_model_state)
self.ui.radioButton_3.toggled.connect(self.radioButton_file_state)
self.ui.radioButton_4.toggled.connect(self.radioButton_file_state)
self.ui.radioButton_5.toggled.connect(self.radioButton_file_state)
self.ui.checkBox.stateChanged.connect(self.checkBox_camera)
self.ui.button_model.clicked.connect(self.select_model)
self.ui.button_image.clicked.connect(self.select_file)
self.ui.button_reserve1.clicked.connect(self.reserve1)
self.ui.button_reserve2.clicked.connect(self.reserve2)
self.ui.button_save.clicked.connect(self.save_config)
self.ui.button_run.clicked.connect(self.run_program)
self.ui.button_stop.clicked.connect(self.stop_program)
self.ui.button_exit.clicked.connect(self.exit_window)
self.timer.timeout.connect(self.updateFrame)
def radioButton_model_state(self):
button_selected = self.sender()
if button_selected.isChecked() == True:
self.model_type = button_selected.text()
self.ui.output_text.append("已选择模型类别:"+self.model_type)
self.model_path = ''
self.ui.lineEdit_model.setText(self.model_path)
print(self.model_type, "被选中")
# else:
# print(button_selected.text(), "被取消选中")
def radioButton_deploy_state(self):
button_selected = self.sender()
if button_selected.isChecked() == True:
self.deploy_type = button_selected.text()
self.ui.output_text.append("已选择部署类别:"+self.deploy_type)
self.model_path = ''
self.ui.lineEdit_model.setText(self.model_path)
print(self.deploy_type, "被选中")
# else:
# print(button_selected.text(), "被取消选中")
def radioButton_file_state(self):
button_selected = self.sender()
if button_selected.isChecked() == True:
self.data_type = button_selected.text()
self.ui.output_text.append("已选择数据类别:"+self.data_type)
self.image_path = '' # 更改选项后,清空选项
self.ui.lineEdit_image.setText(self.image_path)
if self.data_type == 'video':
self.ui.checkBox.setEnabled(True)
if self.ui.checkBox.isChecked() == True:
self.ui.label_2.setEnabled(False)
self.ui.lineEdit_image.setEnabled(False)
self.ui.button_image.setEnabled(False)
else:
self.ui.checkBox.setEnabled(False)
self.ui.label_2.setEnabled(True)
self.ui.lineEdit_image.setEnabled(True)
self.ui.button_image.setEnabled(True)
print(self.data_type)
# print(self.data_type, "被选中")
# else:
# print(button_selected.text(), "被取消选中")
def checkBox_camera(self):
checker = self.sender()
if checker.isChecked() == True:
print("camera is checked!")
self.ui.output_text.append('Camera Selected!')
self.camera = True
self.image_path = ''
self.ui.label_2.setEnabled(False)
self.ui.lineEdit_image.setEnabled(False)
self.ui.button_image.setEnabled(False)
else:
print("camera is not checked!")
self.ui.output_text.append('Camera Deselected!')
self.camera = False
self.ui.label_2.setEnabled(True)
self.ui.lineEdit_image.setEnabled(True)
self.ui.button_image.setEnabled(True)
def select_model(self):
self.model_path = ''
# self.model_path, _ = QFileDialog.getOpenFileName(self, '打开模型文件', '.', ' 所有文件 (*.*)')
if self.deploy_type == 'ONNX':
self.model_path, _ = QFileDialog.getOpenFileName(self, '打开模型文件', '.','ONNX文件 (*.onnx);;所有文件 (*.*);;')
elif self.deploy_type == 'OpenVino':
self.model_path, _ = QFileDialog.getOpenFileName(self, '打开模型文件', '.', 'Openvino文件 (*.xml);;所有文件 (*.*);;')
else:
print("ERROR")
self.ui.lineEdit_model.setText(self.model_path)
print(self.model_path)
self.ui.output_text.append('选择模型:' + self.model_path)
# 判空逻辑
if self.model_path == '':
QMessageBox.information(self, "提示", "请选择模型!", QMessageBox.Ok)
def select_file(self):
# 根据文件类型选择文件
self.image_path = ''
if self.data_type == 'image':
self.image_path, _ = QFileDialog.getOpenFileName(self, '打开图片', '.',
'图形文件 (*.jpg *.png *.bmp *.jpeg *.gif);;所有文件 (*.*);;')
elif self.data_type == 'video':
self.image_path, _ = QFileDialog.getOpenFileName(self, '打开视频', '.', '视频文件 (*.mp4 *.avi *.mkv);;所有文件 (*)')
elif self.data_type == 'folder':
self.image_path = QFileDialog.getExistingDirectory(self, "选择文件夹", '.')
else:
print(self.image_path)
print("ERROR")
# 判空逻辑
if self.image_path == '':
QMessageBox.information(self, "提示", "请选择文件!", QMessageBox.Ok)
self.ui.lineEdit_image.setText(self.image_path)
print(self.image_path)
self.ui.output_text.append('选择图像:' + self.image_path)
def save_config(self):
# 设置参数值
self.Conf = self.ui.spin_conf.value()
self.IoU = self.ui.spin_iou.value()
self.other = self.ui.spin_other.value()
# 输出日志信息
self.ui.output_text.append('------------以下配置已保存------------')
self.ui.output_text.append('模型类型:' + self.model_type)
self.ui.output_text.append('部署类型:' + self.deploy_type)
self.ui.output_text.append('文件类型:' + self.data_type)
self.ui.output_text.append('模型位置:' + self.model_path)
if self.camera:
self.ui.output_text.append('Use Camera as Video')
else:
self.ui.output_text.append('图像位置:' + self.image_path)
self.ui.output_text.append('Conf:' + str(self.Conf))
self.ui.output_text.append('IoU:' + str(self.IoU))
self.ui.output_text.append('other:' + str(self.other))
self.ui.output_text.append('--------------------------------------')
if self.data_type == 'image':
img = cv.imread(self.image_path)
self.show_image(img)
def show_image(self, img_out):
self.ui.image_label.setPixmap(QPixmap.fromImage(QImage(img_out.data, img_out.shape[1], img_out.shape[0], img_out.shape[1]*3, QImage.Format_RGB888).rgbSwapped()))
QApplication.processEvents()
def run_program(self):
self.ui.output_text.append("程序开始运行...")
if self.model_type == 'Yolov5' and self.deploy_type == 'ONNX' and self.data_type == 'image':
print("Yolov5+ONNX+image")
self.yolov5_onnx_image()
elif self.model_type == 'Yolov5' and self.deploy_type == 'ONNX' and self.data_type == 'video':
print("Yolov5+ONNX+video")
self.yolov5_onnx_video()
elif self.model_type == 'Yolov5' and self.deploy_type == 'ONNX' and self.data_type == 'folder':
print("Yolov5+ONNX+folder")
self.yolov5_onnx_folder()
elif self.model_type == 'Yolov5' and self.deploy_type == 'OpenVino' and self.data_type == 'image':
print("Yolov5+OpenVino+image")
self.yolov5_vino_image()
elif self.model_type == 'Yolov5' and self.deploy_type == 'OpenVino' and self.data_type == 'video':
print("Yolov5+OpenVino+video")
self.yolov5_vino_video()
elif self.model_type == 'Yolov5' and self.deploy_type == 'OpenVino' and self.data_type == 'folder':
print("Yolov5+OpenVino+folder")
self.yolov5_vino_folder()
elif self.model_type == 'Yolov8' and self.deploy_type == 'ONNX' and self.data_type == 'image':
print("Yolov8+ONNX+image")
self.yolov8_onnx_image()
elif self.model_type == 'Yolov8' and self.deploy_type == 'ONNX' and self.data_type == 'video':
print("Yolov8+ONNX+video")
self.yolov8_onnx_video()
elif self.model_type == 'Yolov8' and self.deploy_type == 'ONNX' and self.data_type == 'folder':
print("Yolov8+ONNX+folder")
self.yolov8_onnx_folder()
elif self.model_type == 'Yolov8' and self.deploy_type == 'OpenVino' and self.data_type == 'image':
print("Yolov8+OpenVino+image")
self.yolov8_vino_image()
elif self.model_type == 'Yolov8' and self.deploy_type == 'OpenVino' and self.data_type == 'video':
print("Yolov8+OpenVino+video")
self.yolov8_vino_video()
elif self.model_type == 'Yolov8' and self.deploy_type == 'OpenVino' and self.data_type == 'folder':
print("Yolov8+OpenVino+folder")
self.yolov8_vino_folder()
else:
print("ERROR in run_program")
self.ui.output_text.append('------------程序运行结束------------')
''''
img_out = ONNX_img_qt(self.model_path, self.image_path, self.Conf, self.IoU)
height, width, byteValue = img_out.shape
bytePerLine = 3 * width
q_image = QImage(img_out.data, width, height, bytePerLine, QImage.Format_RGB888).rgbSwapped()
self.ui.image_label.setPixmap(QPixmap.fromImage(q_image))
'''
def stop_program(self):
self.stop = True
print("按下停止键")
def exit_window(self):
self.close()
# 读取摄像头
def reserve1(self):
print("保留按键1按下")
self.cap = cv.VideoCapture(0)
fps = int(self.cap.get(cv.CAP_PROP_FPS))
# total_frames = int(self.cap.get(cv.CAP_PROP_FRAME_COUNT))
timer_interval = int(1000 / fps)
self.timer.setInterval(timer_interval)
self.timer.start()
'''
# 载入视频数据
def reserve1(self):
print("保留按键1按下")
# folder_path = QFileDialog.getExistingDirectory(self, "选择文件夹", '.')
video_path, _ = QFileDialog.getOpenFileName(self, '打开文件', '.', '视频文件 (*.mp4 *.avi *.mkv);;所有文件 (*)')
if video_path:
self.video_path = video_path
self.cap = cv.VideoCapture(self.video_path)
fps = int(self.cap.get(cv.CAP_PROP_FPS))
# total_frames = int(self.cap.get(cv.CAP_PROP_FRAME_COUNT))
timer_interval = int(1000 / fps)
self.timer.setInterval(timer_interval)
else:
print("未选择路径")
'''
def reserve2(self):
print("保留按键2按下")
# 切换播放/停止状态
self.playing = not self.playing
# 播放还未结束
if self.playing:
# 启动定时器
self.timer.start()
self.ui.button_reserve2.setText('停止')
else:
# 停止定时器
self.timer.stop()
self.ui.button_reserve2.setText('播放')
def updateFrame(self):
# 读取视频帧
ret, frame = self.cap.read()
if ret:
height, width, channel = frame.shape
bytes_per_line = 3 * width
q_img = QImage(frame.data, width, height, bytes_per_line, QImage.Format_RGB888).rgbSwapped()
# 将 QImage 显示在 QLabel 上
# self.image_label_org.setPixmap(QPixmap.fromImage(q_img))
self.ui.image_label.setPixmap(QPixmap.fromImage(q_img).scaled(self.ui.image_label.size(), Qt.KeepAspectRatio, Qt.SmoothTransformation))
else:
# 当视频播放完毕时停止定时器
self.cap.set(cv.CAP_PROP_POS_FRAMES, 0) # 实现视频循环播放的功能
#self.timer.stop() # 视频播放单次
def closeEvent(self, event):
# 在窗口关闭时释放资源
if self.cap is not None:
self.cap.release()
# 以下为部署调用函数
def yolov5_onnx_image(self):
model = Yolov5ONNX(self.model_path)
t0 = time.time()
output, or_img = model.inference(self.image_path) # 1.推理
infer_time = time.time() - t0
print("ONNX inferance time:", infer_time)
outbox = filter_box(output, self.Conf, self.IoU) # 2.滤框
'''
# 注释掉,防止中断程序
if len(outbox) == 0:
print('没有发现物体')
sys.exit(0)
'''
if np.size(outbox) != 0:
or_img = model.draw(or_img, outbox) # 3.绘制结果并显示
or_img = cv.putText(or_img, "time= %.4f" % (infer_time), (0, 40), cv.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
img_name = os.path.basename(self.image_path)
file_name, file_extension = os.path.splitext(img_name)
cv.imwrite('./results/{}'.format(file_name + '_yolov5_onnx' + file_extension), or_img)
self.show_image(or_img)
self.ui.output_text.append("推理时长{:.4f},结果保存于{}".format(infer_time,'results'))
def yolov5_onnx_video(self):
model = Yolov5ONNX(self.model_path)
if self.image_path == "":
video = cv.VideoCapture(0) # 调用摄像头
video_save_path = './results/camera_yolov5_onnx.mp4'
else:
video = cv.VideoCapture(self.image_path) # 读取视频文件
base_name = os.path.basename(self.image_path)
file_name, file_extension = os.path.splitext(base_name)
video_save_path = './results/' + file_name + '_yolov5_onnx' + file_extension
# 保存结果使用
video_fps = int(round(video.get(cv.CAP_PROP_FPS)))
if video_save_path != "":
fourcc = cv.VideoWriter_fourcc(*'XVID')
size = (int(video.get(cv.CAP_PROP_FRAME_WIDTH)), int(video.get(cv.CAP_PROP_FRAME_HEIGHT)))
# size = (640,640)
# _, frame = video.read()
# size = (letterbox(frame)[0].shape[1], letterbox(frame)[0].shape[0])
out = cv.VideoWriter(video_save_path, fourcc, video_fps, size)
fps = 0.0
# 判断是否成功创建视频流
t0 = time.time()
while video.isOpened():
t1 = time.time()
ret, frame = video.read()
if ret is True:
# frame = cv.flip(frame, 1) # 调用摄像头时使用
output, or_img = model.inference(frame)
outbox = filter_box(output, self.Conf, self.IoU)
'''
# 防止异常退出
if len(outbox) == 0:
print('没有发现物体')
sys.exit(0)
'''
if np.size(outbox) != 0:
or_img = model.draw(or_img, outbox)
fps = (fps + (1. / (time.time() - t1))) / 2
# print("fps= %.2f" % (fps))
or_img = cv.putText(or_img, "fps= %.2f" % (fps), (0, 40), cv.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
# cv.imshow("Video", or_img)
self.show_image(or_img)
if video_save_path != "": # 保存结果
out.write(or_img)
# 按下q退出, 改成按键槽函数退出
#if cv.waitKey(1) & 0xFF == ord('q'):
# break
if self.stop:
self.stop = False
break
else:
break
infer_time = time.time() - t0
video.release() # 释放并关闭窗口
if video_save_path != "": # 保存结果
#print("Save processed video to the path :" + video_save_path)
self.ui.output_text.append("推理时长{:.4f},结果保存于{}".format(infer_time, 'results'))
out.release()
def yolov5_onnx_folder(self):
image_files = [f for f in os.listdir(self.image_path) if f.lower().endswith(('.png', '.jpg', '.jpeg', '.gif', '.bmp'))]
if not image_files:
print(f"{self.image_path} 中没有图片文件。")
sys.exit(0)
model = Yolov5ONNX(self.model_path)
#for image_file in image_files:
for index, image_file in enumerate(image_files):
image_path = os.path.join(self.image_path, image_file)
t0 = time.time()
output, or_img = model.inference(image_path) # 1.推理
infer_time = time.time() - t0
print("ONNX inferance time:", infer_time)
outbox = filter_box(output, self.Conf, self.IoU) # 2.滤框
if np.size(outbox) != 0:
or_img = model.draw(or_img, outbox) # 3.绘制结果并显示
or_img = cv.putText(or_img, "time= %.4f" % (infer_time), (0, 40), cv.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0),2)
img_name = os.path.basename(image_path)
file_name, file_extension = os.path.splitext(img_name)
cv.imwrite('./results/{}'.format(file_name + '_yolov5_onnx' + file_extension), or_img)
self.show_image(or_img)
self.ui.output_text.append("进度{}/{},推理时长{:.4f},结果保存于{}".format(index+1, len(image_files),infer_time, 'results'))
if self.stop:
self.stop = False
break
def yolov5_vino_image(self):
model = Yolov5VINO(self.model_path)
t0 = time.time()
output, or_img = model.inference(self.image_path) # 1.推理
infer_time = time.time() - t0
print("VINO inferrance time:", infer_time)
outbox = filter_box(output, self.Conf, self.IoU) # 2.滤框
'''
if len(outbox) == 0:
print('没有发现物体')
sys.exit(0)
'''
if np.size(outbox) != 0:
or_img = model.draw(or_img, outbox) # 3.绘制结果并显示
or_img = cv.putText(or_img, "time= %.4f" % (infer_time), (0, 40), cv.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
img_name = os.path.basename(self.image_path)
file_name, file_extension = os.path.splitext(img_name)
cv.imwrite('./results/{}'.format(file_name+'_yolov5_vino'+file_extension), or_img)
self.show_image(or_img)
self.ui.output_text.append("推理时长{:.4f},结果保存于{}".format(infer_time,'results'))
def yolov5_vino_video(self):
video_save_path = 'results/test_vino.mp4'
model = Yolov5VINO(self.model_path)
if self.image_path == "":
video = cv.VideoCapture(0) # 调用摄像头
video_save_path = './results/camera_yolov5_vino.mp4'
else:
video = cv.VideoCapture(self.image_path) # 读取视频文件
base_name = os.path.basename(self.image_path)
file_name, file_extension = os.path.splitext(base_name)
video_save_path = './results/' + file_name + '_yolov5_vino' + file_extension
# 保存结果使用
video_fps = int(round(video.get(cv.CAP_PROP_FPS)))
if video_save_path != "":
fourcc = cv.VideoWriter_fourcc(*'XVID')
size = (int(video.get(cv.CAP_PROP_FRAME_WIDTH)), int(video.get(cv.CAP_PROP_FRAME_HEIGHT)))
# size = (640,640)
# _, frame = video.read()
# size = (letterbox(frame)[0].shape[1], letterbox(frame)[0].shape[0])
out = cv.VideoWriter(video_save_path, fourcc, video_fps, size)
fps = 0.0
# 判断是否成功创建视频流
t0 = time.time()
while video.isOpened():
t1 = time.time()
ret, frame = video.read()
if ret is True:
# frame = cv.flip(frame, 1) # 调用摄像头时使用
output, or_img = model.inference(frame)
outbox = filter_box(output, self.Conf, self.IoU)
'''
# 防止异常退出
if len(outbox) == 0:
print('没有发现物体')
sys.exit(0)
'''
if np.size(outbox) != 0:
or_img = model.draw(or_img, outbox)
fps = (fps + (1. / (time.time() - t1))) / 2
# print("fps= %.2f" % (fps))
or_img = cv.putText(or_img, "fps= %.2f" % (fps), (0, 40), cv.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
# cv.imshow("Video", or_img)
self.show_image(or_img)
if video_save_path != "": # 保存结果
out.write(or_img)
# 按下q退出, 改成按键槽函数退出
#if cv.waitKey(1) & 0xFF == ord('q'):
# break
if self.stop:
self.stop = False
break
else:
break
infer_time = time.time() - t0
video.release() # 释放并关闭窗口
if video_save_path != "": # 保存结果
#print("Save processed video to the path :" + video_save_path)
self.ui.output_text.append("推理时长{:.4f},结果保存于{}".format(infer_time, 'results'))
out.release()
def yolov5_vino_folder(self):
image_files = [f for f in os.listdir(self.image_path) if f.lower().endswith(('.png', '.jpg', '.jpeg', '.gif', '.bmp'))]
if not image_files:
print(f"{self.image_path} 中没有图片文件。")
sys.exit(0)
model = Yolov5VINO(self.model_path)
#for image_file in image_files:
for index, image_file in enumerate(image_files):
image_path = os.path.join(self.image_path, image_file)
t0 = time.time()
output, or_img = model.inference(image_path) # 1.推理
infer_time = time.time() - t0
print("VINO inferance time:", infer_time)
outbox = filter_box(output, self.Conf, self.IoU) # 2.滤框
if np.size(outbox) != 0:
or_img = model.draw(or_img, outbox) # 3.绘制结果并显示
or_img = cv.putText(or_img, "time= %.4f" % (infer_time), (0, 40), cv.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0),2)
img_name = os.path.basename(image_path)
file_name, file_extension = os.path.splitext(img_name)
cv.imwrite('./results/{}'.format(file_name + '_yolov5_vino' + file_extension), or_img)
self.show_image(or_img)
self.ui.output_text.append("进度{}/{},推理时长{:.4f},结果保存于{}".format(index+1, len(image_files),infer_time, 'results'))
if self.stop:
self.stop = False
break
def yolov8_onnx_image(self):
detection = YOLOv8_ONNX(self.model_path, self.image_path, self.Conf, self.IoU)
t0 = time.time()
output_image = detection.main()
infer_time = time.time() - t0
print("ONNX inferrance time:", infer_time)
# 当图中无目标时,重新读取图片
if len(output_image[0]) == 0:
output_image = cv.imread(self.image_path)
output_image = cv.putText(output_image, "time= %.4f" % (infer_time), (0, 40), cv.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
img_name = os.path.basename(self.image_path)
file_name, file_extension = os.path.splitext(img_name)
cv.imwrite('./results/{}'.format(file_name + '_yolov8_onnx' + file_extension), output_image)
self.show_image(output_image)
self.ui.output_text.append("推理时长{:.4f},结果保存于{}".format(infer_time,'results'))
def yolov8_onnx_video(self):
detection = YOLOv8_ONNX(self.model_path, self.image_path, self.Conf, self.IoU)
if self.image_path == "":
video = cv.VideoCapture(0) # 调用摄像头
video_save_path = './results/camera_yolov8_onnx.mp4'
else:
video = cv.VideoCapture(self.image_path) # 读取视频文件
base_name = os.path.basename(self.image_path)
file_name, file_extension = os.path.splitext(base_name)
video_save_path = './results/' + file_name + '_yolov8_onnx' + file_extension
# 保存结果使用
video_fps = int(round(video.get(cv.CAP_PROP_FPS)))
if video_save_path != "":
fourcc = cv.VideoWriter_fourcc(*'XVID')
size = (int(video.get(cv.CAP_PROP_FRAME_WIDTH)), int(video.get(cv.CAP_PROP_FRAME_HEIGHT)))
# size = (640,640)
# _, frame = video.read()
# size = (letterbox(frame)[0].shape[1], letterbox(frame)[0].shape[0])
# print(size)
out = cv.VideoWriter(video_save_path, fourcc, video_fps, size)
fps = 0.0
t0 = time.time()
# 判断是否成功创建视频流
while video.isOpened():
t1 = time.time()
ret, frame = video.read()
if ret is True:
# frame = cv.flip(frame, 1) # 调用摄像头时使用
# --------------------------------------
output_image = detection.main(frame)
if len(output_image[0]) == 0:
output_image = frame
# print(output_image.shape)
# -------------------------------------------
fps = (fps + (1. / (time.time() - t1))) / 2
# print("fps= %.2f" % (fps))
output_image = cv.putText(output_image, "fps= %.2f" % (fps), (0, 40), cv.FONT_HERSHEY_SIMPLEX, 1,
(0, 255, 0), 2)
# cv.imshow("Video", output_image)
self.show_image(output_image)
if video_save_path != "": # 保存结果
out.write(output_image)
if self.stop:
self.stop = False
break
else:
break
infer_time = time.time() - t0
video.release() # 释放并关闭窗口
if video_save_path != "": # 保存结果
# print("Save processed video to the path :" + video_save_path)
self.ui.output_text.append("推理时长{:.4f},结果保存于{}".format(infer_time, 'results'))
out.release()
cv.destroyAllWindows()
def yolov8_onnx_folder(self):
image_files = [f for f in os.listdir(self.image_path) if f.lower().endswith(('.png', '.jpg', '.jpeg', '.gif', '.bmp'))]
if not image_files:
print(f"{self.image_path} 中没有图片文件。")
sys.exit(0)
detection = YOLOv8_ONNX(self.model_path, self.image_path, self.Conf, self.IoU)
for index, image_file in enumerate(image_files):
image_path = os.path.join(self.image_path, image_file)
detection.input_image = image_path
t0 = time.time()
output_image = detection.main()
infer_time = time.time() - t0
print("ONNX inferance time:", infer_time)
if len(output_image[0]) == 0:
output_image = cv.imread(image_path)
output_image = cv.putText(output_image, "time= %.4f" % (infer_time), (0, 40), cv.FONT_HERSHEY_SIMPLEX, 1,(0, 255, 0), 2)
img_name = os.path.basename(image_path)
file_name, file_extension = os.path.splitext(img_name)
cv.imwrite('./results/{}'.format(file_name + '_yolov8_onnx' + file_extension), output_image)
self.show_image(output_image)
self.ui.output_text.append("进度{}/{},推理时长{:.4f},结果保存于{}".format(index+1, len(image_files), infer_time, 'results'))
def yolov8_vino_image(self):
detection = YOLOv8_VINO(self.model_path, self.image_path, self.Conf, self.IoU)
t0 = time.time()
output_image = detection.main()
infer_time = time.time() - t0
print("VINO inferrance time:", infer_time)
# 当图中无目标时,重新读取图片
if len(output_image[0]) == 0:
output_image = cv.imread(self.image_path)
output_image = cv.putText(output_image, "time= %.4f" % (infer_time), (0, 40), cv.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
img_name = os.path.basename(self.image_path)
file_name, file_extension = os.path.splitext(img_name)
cv.imwrite('./results/{}'.format(file_name + '_yolov8_vino' + file_extension), output_image)
self.show_image(output_image)
self.ui.output_text.append("推理时长{:.4f},结果保存于{}".format(infer_time,'results'))
def yolov8_vino_video(self):
detection = YOLOv8_VINO(self.model_path, self.image_path, self.Conf, self.IoU)
if self.image_path == "":
video = cv.VideoCapture(0) # 调用摄像头
video_save_path = './results/camera_yolov8_vino.mp4'
else:
video = cv.VideoCapture(self.image_path) # 读取视频文件
base_name = os.path.basename(self.image_path)
file_name, file_extension = os.path.splitext(base_name)
video_save_path = './results/' + file_name + '_yolov8_vino' + file_extension
# 保存结果使用
video_fps = int(round(video.get(cv.CAP_PROP_FPS)))
if video_save_path != "":
fourcc = cv.VideoWriter_fourcc(*'XVID')
size = (int(video.get(cv.CAP_PROP_FRAME_WIDTH)), int(video.get(cv.CAP_PROP_FRAME_HEIGHT)))
# size = (640,640)
# _, frame = video.read()
# size = (letterbox(frame)[0].shape[1], letterbox(frame)[0].shape[0])
# print(size)
out = cv.VideoWriter(video_save_path, fourcc, video_fps, size)
fps = 0.0
t0 = time.time()
# 判断是否成功创建视频流
while video.isOpened():
t1 = time.time()
ret, frame = video.read()
if ret is True:
# frame = cv.flip(frame, 1) # 调用摄像头时使用
# --------------------------------------
output_image = detection.main(frame)
if len(output_image[0]) == 0:
output_image = frame
# print(output_image.shape)
# -------------------------------------------
fps = (fps + (1. / (time.time() - t1))) / 2
# print("fps= %.2f" % (fps))
output_image = cv.putText(output_image, "fps= %.2f" % (fps), (0, 40), cv.FONT_HERSHEY_SIMPLEX, 1,
(0, 255, 0), 2)
# cv.imshow("Video", output_image)
self.show_image(output_image)
if video_save_path != "": # 保存结果
out.write(output_image)
if self.stop:
self.stop = False
break
else:
break
infer_time = time.time() - t0
video.release() # 释放并关闭窗口
if video_save_path != "": # 保存结果
# print("Save processed video to the path :" + video_save_path)
self.ui.output_text.append("推理时长{:.4f},结果保存于{}".format(infer_time, 'results'))
out.release()
cv.destroyAllWindows()
def yolov8_vino_folder(self):
image_files = [f for f in os.listdir(self.image_path) if f.lower().endswith(('.png', '.jpg', '.jpeg', '.gif', '.bmp'))]
if not image_files:
print(f"{self.image_path} 中没有图片文件。")
sys.exit(0)
detection = YOLOv8_VINO(self.model_path, self.image_path, self.Conf, self.IoU)
for index, image_file in enumerate(image_files):
image_path = os.path.join(self.image_path, image_file)
detection.input_image = image_path
t0 = time.time()
output_image = detection.main()
infer_time = time.time() - t0
print("VINO inferance time:", infer_time)
if len(output_image[0]) == 0:
output_image = cv.imread(image_path)
output_image = cv.putText(output_image, "time= %.4f" % (infer_time), (0, 40), cv.FONT_HERSHEY_SIMPLEX, 1,(0, 255, 0), 2)
img_name = os.path.basename(image_path)
file_name, file_extension = os.path.splitext(img_name)
cv.imwrite('./results/{}'.format(file_name + '_yolov8_vino' + file_extension), output_image)
self.show_image(output_image)
self.ui.output_text.append("进度{}/{},推理时长{:.4f},结果保存于{}".format(index+1, len(image_files), infer_time, 'results'))
if __name__ == '__main__':
# 创建QApplication类的实例
app = QApplication(sys.argv)
# 创建对象
window = MyForm("Yolo Demo v3.0")
# 创建窗口
window.show()
# 进入程序的主循环,并通过exit函数确保主循环安全结束(该释放资源的一定要释放)
sys.exit(app.exec_())
# TODO
# 1.保存路径的问题(保存路径可指定功能)
# 2.显示图像的后处理(图片显示居中,过宽/高图片的缩放功能)
# 3.选择模型的问题(如,选择的是yolov5+onnx,但是用户选择了yolov8的模型)