This repository was archived by the owner on Aug 11, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathcost_model_funcs.py
693 lines (636 loc) · 36 KB
/
cost_model_funcs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
import numpy as np
import copy
import sys
import math
from numpy import prod
"""
This file includes all the functions used in the cost model.
"""
def get_operand_level_energy_cost(operand, level, mem_word_cost, mac_array_info, schedule_info, loop, mem_fifo,
mem_scheme, precision, utilization, sum_shared_bw):
# mac_cost = get_mac_cost(layer, mac_array_info['single_mac_energy'])
#
# if level < len(schedule_info['temporal'][operand]) - 1:
# wire_cost = get_operand_level_wire_cost(operand, level, schedule_info, mac_array_info, loop, mem_fifo)
# else:
# wire_cost = 0
wire_cost = 0
mem_cost_dy = get_operand_level_dynamic_mem_cost(operand, level, loop, mem_word_cost, mem_scheme, precision,
utilization, sum_shared_bw)
mem_cost_st = get_static_mem_cost()
return [wire_cost, mem_cost_dy, mem_cost_st]
def get_active_mac_cost(layer, single_mac_energy):
return layer.total_MAC_op * single_mac_energy
def get_idle_mac_cost(layer, layer_rounded, array_size, idle_mac_energy, spatial_unrolling):
idle_mac_cost = []
for su in spatial_unrolling:
active_mac_count = 1
for level_list in su['W']:
if level_list:
for su_unit in level_list:
active_mac_count *= su_unit[1]
total_mapping_count = math.ceil(layer_rounded.total_MAC_op/active_mac_count)
ideal_mac_count = total_mapping_count * array_size[0] * array_size[1]
idle_mac_count = ideal_mac_count - layer.total_MAC_op
idle_mac_cost.append(idle_mac_count * idle_mac_energy)
return idle_mac_cost
def get_operand_level_inter_pe_distance(op, operand_partitions, input_temporal_loops, is_fifo):
"""
The function computes the worst inter-PE distance to be covered by each variable accessed at level above of array for
each operand across the listed dimensions.
If two dimensions, first dimension is assumed to be the unrolling/flooring of operand across columns
second dimension is assumed to be the unrolling/flooring of operand across rows
Across each dimension, if flooring is present, each flooring block has to be reached via an offset distance, where
offset is a list that contains the offsets for each flooring block.
Inside each flooring block, given the unrolling scheme, an inter-block distance has to be covered.
The distance for each array dimension is computed as the sum(distance) * len(offset) + sum(offset)
:param op: Operand type, char variable in ['I','W','O']
:param operand_partitions: Unrolling and flooring scheme for all partitions at a given level, expressed as
operand_partitions[operand][dimension][flooring block type][flooring block size]
:return: distance covered by the given operand type with the given operand partition scheme
"""
'''
operand_irrelevant_types contains the irrelevant loop for each operand as enum integers (ref. layer.py)
operand_irrelevant_types[operand][irrelevant types]
'''
output_irrelevant = [1, 2, 5, 7]
input_irrelevant = [6]
weight_irrelevant = [3, 4, 7]
operand_irrelevant_types = {'W': weight_irrelevant, 'I': input_irrelevant, 'O': output_irrelevant}
opit_distance = [0]
# Count array cost for each operand type
operand_partitions = operand_partitions[op]
opit = 0
total_distance_opit = 0
length = []
lengthx = [0]
distance = []
count = []
dim_distance = []
'''
If the operand_partitions at the given level list is empty, the distance covered in the array will be zero since
there's no unrolling, so returns [0]
'''
if not operand_partitions:
return [0]
else:
for dim in range(len(operand_partitions)):
'''
INTER-BLOCK DISTANCE
Inside each flooring block, the unrolling scheme is considered. The inter-block distance is the sum of
jumps between elements of the array times the length of each jump.
TODO rest of commenting :P
'''
distance = []
for i in range(0, len(operand_partitions[dim])):
if not operand_partitions[dim][i]:
continue
if operand_partitions[dim][i][0] in operand_irrelevant_types[op]:
# COUNT OF JUMPS
n = operand_partitions[dim][i][1]
nx = 1
for j in range(len(operand_partitions[dim]) - 2, i, -1):
if operand_partitions[dim][j][0] in operand_irrelevant_types[op]:
nx = nx * operand_partitions[dim][j][1]
n = n * nx
count.append(n)
# LENGTH OF EACH JUMP
size_partitions_below = 1
for k in range(0, i):
size_partitions_below = size_partitions_below * operand_partitions[dim][k][1]
length.append(size_partitions_below - lengthx[-1])
lengthx.append(size_partitions_below)
distance.append(length[-1] * count[-1])
'''
OFFSET
Given the flooring/unrolling scheme, across the considered dimension if irrelevant partition loops are present
"islands" (the flooring blocks) of repeated values can be localized. While the distance inside the flooring
blocks is computed as the inter-block distance, each block is also characterized by an offset wrt source.
The offset for each block is computed as base_step * j + baseline.
Baseline is the distance to be covered that contains all previous flooring blocks
Base step is the product of the sizes of the innermost relevant partitions in the flooring block
'''
offset = []
base_step = 1
if operand_partitions[dim]:
first_relevant_partition = len(operand_partitions[dim])
for i in range(len(operand_partitions[dim])):
if operand_partitions[dim][i][0] not in operand_irrelevant_types[op]:
first_relevant_partition = i
for j in range(0, i):
base_step = base_step * operand_partitions[dim][j][1]
baseline = 0
for j in range(0, operand_partitions[dim][first_relevant_partition][1]):
offset.append(base_step * j + baseline)
break
for i in range(first_relevant_partition + 1, len(operand_partitions[dim])):
if operand_partitions[dim][i][0] not in operand_irrelevant_types[op]:
for k in range(1, operand_partitions[dim][i][1]):
baseline = 1
if i == 0:
baseline = 0
for j in range(0, i):
baseline = baseline * operand_partitions[dim][j][1] * k
for j in range(0, operand_partitions[dim][first_relevant_partition][1]):
offset.append(base_step * j + baseline)
if not operand_partitions[dim] or not offset:
offset = [0]
rtl = 1
fifo_distance = 0
if op == 'I':
if is_fifo == True:
unroll_size = 1
unroll_loop_type = 0
for j in range(len(operand_partitions[dim])):
if operand_partitions[dim][j][0] in [1, 2, 3, 4]:
unroll_loop_type = operand_partitions[dim][j][0]
for m in range(0, j + 1):
unroll_size *= operand_partitions[dim][m][1]
break
first_relevant_temporal_loop_size = 1
tmp_tl = [i for i in input_temporal_loops if i[0] != 6]
if tmp_tl:
if unroll_loop_type == 1:
if tmp_tl[0][0] == 3:
rtl = tmp_tl[0][1]
if unroll_loop_type == 3:
try:
if tmp_tl[0][0] == 1:
rtl = tmp_tl[0][1]
except:
a = 1
if unroll_loop_type == 2:
if tmp_tl[0][0] == 4:
rtl = tmp_tl[0][1]
if unroll_loop_type == 4:
if tmp_tl[0][0] == 2:
rtl = tmp_tl[0][1]
# TODO this formula has to be corrected. 1 should be the number of irrelevant jumps and 0 the sum of the lenghts of the irrelevant jumps
# Since we assume that there are no replications (FOR NOW) it will be corrected later
fifo_distance = (rtl - 1) * (unroll_size - 1) * 1 + 0
div_factor = 1
# if op != 'I':
# for j in range(len(operand_partitions[dim])):
# if operand_partitions[dim][j][0] not in operand_irrelevant_types[op]:
# div_factor *= operand_partitions[dim][j][1]
# else:
# for j in range(len(operand_partitions[dim])):
# if operand_partitions[dim][j][0] not in operand_irrelevant_types[op]:
# div_factor *= operand_partitions[dim][j][1]
# div_factor = div_factor + rtl - 1
dim_distance.append((sum(distance) * len(offset) + sum(offset) + fifo_distance) / div_factor)
'''
In the case of two dimensions, the distance is computed as in a 2D mesh network:
The distance across rows is taken only once
The distance across columns is multiplied by the number of rows
'''
if len(operand_partitions) == 2:
num_rows = 1
for i in range(len(operand_partitions[1])):
num_rows = num_rows * operand_partitions[1][i][1]
row_distance = dim_distance[0] * num_rows
col_distance = dim_distance[1]
total_distance_opit = row_distance + col_distance
if len(operand_partitions) == 1:
total_distance_opit = dim_distance[0]
opit_distance[opit] = total_distance_opit
return opit_distance
def get_operand_level_wire_cost(op, level, schedule_info, mac_array_info, loop, mem_fifo):
return 0
# """
# Wire cost is calculated as inter-PE cost + memory interconnection cost
# """
# # Inter-PE cost
# """
# Get above-array-level memory (just one level above the array) access count for W/I/O (total access for each),
# and times them with corresponding inter-PE movement step (based on spatial unrolling type and size)
# and unit_wire_energy (energy for 1-bit data movement between neighbour PE)
# """
# """
# Inter-PE distance covered
# """
#
# operand_types = ['W', 'I', 'O']
#
# partitions = {
# 'W': [],
# 'I': [],
# 'O': []}
#
# '''
# Given that the spatial unrolling and the flooring loops are stored in two different variables (ref
# cost_model_input.schedule_info), in order to compute the array cost is easier to change the representation in a
# unique variable that stores the information for both spatial unrolling and flooring.
# Operand partitions are represented as:
# operand_paritions[operand][level][dimension][flooring block type][flooring block size]
# Where operand in ['I','W','O']
# '''
# for operand in operand_types:
# for lev in range(0, len(schedule_info['spatial'][operand])):
# partitions[operand].append([])
# for floor_dim in range(0, len(schedule_info['flooring'][operand][lev])):
# partitions[operand][lev].append([])
# for flooring_type in range(0, len(schedule_info['flooring'][operand][lev][floor_dim])):
# w, a = zip(*schedule_info['spatial'][operand][lev])
# try:
# partitions[operand][lev][floor_dim].append(
# list(schedule_info['spatial'][operand][lev][
# w.index(schedule_info['flooring'][operand][lev][floor_dim][flooring_type])]))
# except:
# return 0
# for operand in operand_types:
# partitions[operand] += [[]] * (level)
# for lev in range(0, len(partitions[operand])):
# if not partitions[operand][lev]:
# partitions[operand][lev].append([])
# try:
# operand_partitions = {'I': partitions['I'][level], 'O': partitions['O'][level], 'W': partitions['W'][level]}
# except IndexError:
# print({'I': partitions['I'], 'O': partitions['O'], 'W': partitions['W']})
# print(level, op)
# # continue
# # sys.exit()
# a = 1
# '''
# Given the adopted representation for the unrolling and flooring schemes, the variable is passed to the function that
# computes the distance that each single variable has to cover in order to reach its position in the array
# '''
# try:
# operand_distance = get_operand_level_inter_pe_distance(op, operand_partitions,
# schedule_info['temporal'][op][level], loop.I_fifo[level])
# except IndexError:
# operand_distance = get_operand_level_inter_pe_distance(op, operand_partitions,
# schedule_info['temporal'][op][level], False)
# operand_distance = np.array(operand_distance)
# operand_irrelevant = {'W': [3, 4, 7], 'I': [6], 'O': [1, 2, 5]}
# '''
# INPUT COST : computed as (distance covered) x (read accesses from level above) x (unit bit wire cost) x (bits
# of precision)
# '''
# div_factor = 1
# for partition in operand_partitions[op]:
# for unrolling in partition:
# if unrolling[0] not in operand_irrelevant[op]:
# div_factor *= unrolling[1]
#
# if op == 'I':
# if mem_fifo[op][level]:
# array_cost = operand_distance[0] * loop.mem_access_elem['I'][level][0] * mac_array_info[
# 'unit_wire_energy'][level] * \
# mac_array_info['precision'] / div_factor
# else:
# array_cost = operand_distance[0] * loop.mem_access_elem['I'][level][0] * mac_array_info[
# 'unit_wire_energy'][level] * \
# mac_array_info['precision'] / div_factor
#
# '''
# WEIGHT COST : computed as (distance covered) x (read accesses from level above) x (unit bit wire cost) x (bits
# of precision)
# '''
# if op == 'W':
# array_cost = operand_distance[0] * loop.mem_access_elem['W'][level][0] * mac_array_info['unit_wire_energy'][
# level] * \
# mac_array_info['precision'] / div_factor
#
# '''
# OUTPUT COST :
# if PARTIAL OUTPUT: (distance covered) x (read+write accesses from level above) x (unit bit wire cost) x (bits of
# precision+headroom bits)
# if FINAL OUTPUT: (distance covered) x (write accesses to level above) x (unit bit wire cost) x (bits of
# precision)
# '''
# if op == 'O':
# if loop.mem_access_elem['O_final'][level][0][1] == 0:
# array_cost = operand_distance[0] * sum(loop.mem_access_elem['O_partial'][level][0]) * \
# mac_array_info['unit_wire_energy'][level] * \
# sum([mac_array_info['precision'] * 2, mac_array_info['headroom']]) / div_factor
# else:
# array_cost = operand_distance[0] * loop.mem_access_elem['O_final'][level][0][1] * \
# mac_array_info['unit_wire_energy'][level] * \
# mac_array_info['precision'] / div_factor
#
# return array_cost
#
# # TODO Memory interconnection cost
def get_operand_level_wire_distance(op, level, schedule_info, mac_array_info, loop, mem_fifo):
return [0, 0]
# """
# Wire cost is calculated as inter-PE cost + memory interconnection cost
# """
# # Inter-PE cost
# """
# Get above-array-level memory (just one level above the array) access count for W/I/O (total access for each),
# and times them with corresponding inter-PE movement step (based on spatial unrolling type and size)
# and unit_wire_energy (energy for 1-bit data movement between neighbour PE)
# """
# """
# Inter-PE distance covered
# """
#
# operand_types = ['W', 'I', 'O']
#
# partitions = {
# 'W': [],
# 'I': [],
# 'O': []}
#
# '''
# Given that the spatial unrolling and the flooring loops are stored in two different variables (ref
# cost_model_input.schedule_info), in order to compute the array cost is easier to change the representation in a
# unique variable that stores the information for both spatial unrolling and flooring.
# Operand partitions are represented as:
# operand_paritions[operand][level][dimension][flooring block type][flooring block size]
# Where operand in ['I','W','O']
# '''
# # for operand in operand_types:
# # for lev in range(0, len(schedule_info['spatial'][operand])):
# # partitions[operand].append([])
# # for floor_dim in range(0, len(schedule_info['flooring'][operand][lev])):
# # partitions[operand][lev].append([])
# # for flooring_type in range(0, len(schedule_info['flooring'][operand][lev][floor_dim])):
# # w, a = zip(*schedule_info['spatial'][operand][lev])
# # try:
# # partitions[operand][lev][floor_dim].append(
# # list(schedule_info['spatial'][operand][lev][
# # w.index(schedule_info['flooring'][operand][lev][floor_dim][flooring_type])]))
# # except:
# # a=1
# for operand in operand_types:
# for lev in range(0, len(schedule_info['spatial'][operand])):
# partitions[operand].append([])
# for floor_dim in range(0, len(schedule_info['flooring'][operand][lev])):
# partitions[operand][lev].append([])
# for flooring_type in range(0, len(schedule_info['flooring'][operand][lev][floor_dim])):
# w, a = zip(*schedule_info['spatial'][operand][lev])
# try:
# partitions[operand][lev][floor_dim].append(
# list(schedule_info['spatial'][operand][lev][
# w.index(schedule_info['spatial'][operand][lev][flooring_type][0])]))
# except:
# return 0
#
# for operand in operand_types:
# partitions[operand] += [[]] * (level)
# for lev in range(0, len(partitions[operand])):
# if not partitions[operand][lev]:
# partitions[operand][lev].append([])
# try:
# operand_partitions = {'I': partitions['I'][level], 'O': partitions['O'][level], 'W': partitions['W'][level]}
# except IndexError:
# print({'I': partitions['I'], 'O': partitions['O'], 'W': partitions['W']})
# print(level, op)
# # continue
# # sys.exit()
# a = 1
# operand_partitions = {'I': partitions['I'][level], 'O': partitions['O'][level], 'W': partitions['W'][level]}
#
# '''
# Given the adopted representation for the unrolling and flooring schemes, the variable is passed to the function that
# computes the distance that each single variable has to cover in order to reach its position in the array
# '''
# try:
# operand_distance = get_operand_level_inter_pe_distance(op, operand_partitions,
# schedule_info['temporal'][op][level],
# loop.I_fifo[level])
# except IndexError:
# operand_distance = get_operand_level_inter_pe_distance(op, operand_partitions,
# schedule_info['temporal'][op][level], False)
# operand_distance = np.array(operand_distance)
#
# operand_irrelevant = {'W': [3, 4, 7], 'I': [6], 'O': [1, 2, 5]}
# div_factor = 1
# for partition in operand_partitions[op]:
# for unrolling in partition:
# if unrolling[0] not in operand_irrelevant[op]:
# div_factor *= unrolling[1]
#
# if op == 'I':
# if mem_fifo[op][level]:
# array_distance = operand_distance[0] * loop.mem_access_elem['I'][level][0] * mac_array_info[
# 'precision'] / div_factor
# else:
# array_distance = operand_distance[0] * loop.mem_access_elem['I'][level][0] * mac_array_info[
# 'precision'] / div_factor
#
# if op == 'W':
# array_distance = operand_distance[0] * loop.mem_access_elem['W'][level][0] * mac_array_info[
# 'precision'] / div_factor
#
# if op == 'O':
#
# if loop.mem_access_elem['O_final'][level][0][1] == 0:
#
# array_distance = operand_distance[0] * sum(loop.mem_access_elem['O_partial'][level][0]) * sum(
# [mac_array_info['precision'] * 2, mac_array_info['headroom']]) / div_factor
# else:
# array_distance = operand_distance[0] * loop.mem_access_elem['O_final'][level][0][1] * mac_array_info[
# 'precision'] / div_factor
#
# return [array_distance, list(operand_distance)]
def iterative_data_format_clean(original_dict):
new_dict = {'W':[], 'I':[], 'O':[]}
for operand in ['W', 'I', 'O']:
for li in original_dict[operand]:
new_dict[operand].append(li[0])
return new_dict
def get_operand_level_dynamic_mem_cost(operand, level, loop, mem_word_cost, mem_scheme, precision, utilization,
sum_shared_bw):
"""
The function computes the dynamic energy consumed for accessing a memory at a certain level for a given operand
:param operand : Should be one of ['I', 'O', 'W']
:param level : Integer number, level with respect to temporal blocking distribution
:param loop : loop object, contains number of memory accesses. For ref, view loop class
:param mem_word_cost : mem word energy cost
The dynamic energy consumption is computed as read cost + write cost at a given memory level for a defined operand
For 'I', 'W':
Read (write) cost are computed as the product of number of read (write) memory accesses per level times the
cost per word access
For 'O':
Given that outputs are divided in two categories (O_partial and O_final) with different access costs and
Given that at each level there's different numbers of writes and reads to level below and above
The read (write) cost is computed as the sum of read (write) accesses to level below + read (write) accesses to
level above for O_partial and for O_final times the relative access costs
"""
"""
FOR COMPUTING SINGLE COST : (PRECISION / BW) * ACCESS COST
"""
if type(mem_scheme.mem_bw['W'][0][0]) in [list, tuple]:
mem_scheme.mem_bw = iterative_data_format_clean(mem_scheme.mem_bw)
if type(mem_word_cost['W'][0][0]) in [list, tuple]:
mem_word_cost = iterative_data_format_clean(mem_word_cost)
if not sum_shared_bw:
# READ COST
if utilization.req_mem_bw_bit[operand][level][0] <= mem_scheme.mem_bw[operand][level][0]:
if operand == 'O':
read_cost = (((loop.mem_access_elem['O_final'][level][0][0] + loop.mem_access_elem['O_final'][level][1][0]) * precision['O_final'] / \
mem_scheme.mem_bw[operand][level][0]) * utilization.pun_factor[operand][level] *
mem_word_cost['O'][level][0]) + (((loop.mem_access_elem['O_partial'][level][0][0] +
loop.mem_access_elem['O_partial'][level][1][0]) *
precision['O'] / mem_scheme.mem_bw[operand][level][0])
* utilization.pun_factor[operand][level] *
mem_word_cost['O'][level][0])
else:
read_cost = (loop.mem_access_elem[operand][level][0] * precision[operand] /
mem_scheme.mem_bw[operand][level][0]) * utilization.pun_factor[operand][level] * \
mem_word_cost[operand][level][0]
else:
if operand == 'O':
read_cost = (((loop.mem_access_elem['O_final'][level][0][0] + loop.mem_access_elem['O_final'][level][1][0]) *
(precision['O_final'] / mem_scheme.mem_bw[operand][level][0])) * mem_word_cost['O'][level][0]) + \
(((loop.mem_access_elem['O_partial'][level][0][0] +
loop.mem_access_elem['O_partial'][level][1][0]) *
(precision['O'] / mem_scheme.mem_bw[operand][level][0])) * mem_word_cost['O'][level][0])
else:
read_cost = (loop.mem_access_elem[operand][level][0] * precision[operand] /
mem_scheme.mem_bw[operand][level][0]) * mem_word_cost[operand][level][0]
# WRITE COST
if utilization.req_mem_bw_bit[operand][level][1] <= mem_scheme.mem_bw[operand][level][1]:
if operand == 'O':
write_cost = (((loop.mem_access_elem['O_final'][level][0][1] +
loop.mem_access_elem['O_final'][level][1][1]) * precision['O_final'] /
mem_scheme.mem_bw[operand][level][1]) * mem_word_cost['O'][level][1]) + (
((loop.mem_access_elem['O_partial'][level][0][1] +
loop.mem_access_elem['O_partial'][level][1][1]) * precision['O'] /
mem_scheme.mem_bw[operand][level][1])
* mem_word_cost['O'][level][1])
else:
write_cost = (loop.mem_access_elem[operand][level][1] * precision[operand] /
mem_scheme.mem_bw[operand][level][1]) * mem_word_cost[operand][level][1]
else:
if operand == 'O':
write_cost = ((loop.mem_access_elem['O_final'][level][0][1] + loop.mem_access_elem['O_final'][level][1][1]) *
(precision['O_final'] / mem_scheme.mem_bw[operand][level][1]) * mem_word_cost['O'][level][1]) + (
(loop.mem_access_elem['O_partial'][level][0][1] +
loop.mem_access_elem['O_partial'][level][1][1]) *
(precision['O'] / mem_scheme.mem_bw[operand][level][1]) * mem_word_cost['O'][level][1])
else:
write_cost = loop.mem_access_elem[operand][level][1] * (
precision[operand] / mem_scheme.mem_bw[operand][level][1]) * mem_word_cost[operand][level][1]
else:
if utilization.req_sh_mem_bw_bit[operand][level][0] <= mem_scheme.mem_bw[operand][level][0]:
if operand == 'O':
read_cost = (((loop.mem_access_elem['O_final'][level][0][0] + loop.mem_access_elem['O_final'][level][1][0]) * precision['O_final'] / \
mem_scheme.mem_bw[operand][level][0]) * utilization.pun_factor[operand][level] *
mem_word_cost['O'][level][0]) + (
((loop.mem_access_elem['O_partial'][level][0][0] +
loop.mem_access_elem['O_partial'][level][1][0]) * precision['O'] /
mem_scheme.mem_bw[operand][level][0]) * utilization.pun_factor[operand][level]
* mem_word_cost['O'][level][0])
else:
read_cost = (loop.mem_access_elem[operand][level][0] * precision[operand] /
mem_scheme.mem_bw[operand][level][0]) * utilization.pun_factor[operand][level] * \
mem_word_cost[operand][level][0]
else:
if operand == 'O':
read_cost = (((loop.mem_access_elem['O_final'][level][0][0] + loop.mem_access_elem['O_final'][level][1][0]) * \
(precision['O_final'] / mem_scheme.mem_bw[operand][level][0])) * mem_word_cost['O'][level][0]) + (((loop.mem_access_elem['O_partial'][level][0][0] +
loop.mem_access_elem['O_partial'][level][1][0]) * (
precision['O'] / mem_scheme.mem_bw[operand][level][0]))
* mem_word_cost['O'][level][0])
else:
read_cost = (loop.mem_access_elem[operand][level][0] * (
precision[operand] / mem_scheme.mem_bw[operand][level][0])) * mem_word_cost[operand][level][0]
# WRITE COST
if utilization.req_mem_bw_bit[operand][level][1] <= mem_scheme.mem_bw[operand][level][1]:
if operand == 'O':
write_cost = (((loop.mem_access_elem['O_final'][level][0][1] +
loop.mem_access_elem['O_final'][level][1][1]) * precision['O_final'] / \
mem_scheme.mem_bw[operand][level][1]) * mem_word_cost['O'][level][1]) + (
((loop.mem_access_elem['O_partial'][level][0][1] +
loop.mem_access_elem['O_partial'][level][1][1]) * precision['O'] /
mem_scheme.mem_bw[operand][level][1])
* mem_word_cost['O'][level][1])
else:
write_cost = (loop.mem_access_elem[operand][level][1] * precision[operand] /
mem_scheme.mem_bw[operand][level][1]) * \
mem_word_cost[operand][level][1]
else:
if operand == 'O':
write_cost = ((loop.mem_access_elem['O_final'][level][0][1] + loop.mem_access_elem['O_final'][level][1][1]) *
(precision['O_final'] / mem_scheme.mem_bw[operand][level][1]) * mem_word_cost['O'][1][
level]) + (
(loop.mem_access_elem['O_partial'][level][0][1] +
loop.mem_access_elem['O_partial'][level][1][1]) *
(precision['O'] / mem_scheme.mem_bw[operand][level][1]) * mem_word_cost['O'][1][
level])
else:
write_cost = loop.mem_access_elem[operand][level][1] * (
precision[operand] / mem_scheme.mem_bw[operand][level][1]) * mem_word_cost[operand][level][1]
return read_cost + write_cost
# TODO need to know memory operating frequency and leakage power. Ignore static memory cost for now.
def get_static_mem_cost():
return 0
def su_correction(mem_scheme):
su_len = {'W': len(mem_scheme.spatial_unrolling[0]['W']),
'I': len(mem_scheme.spatial_unrolling[0]['I']),
'O': len(mem_scheme.spatial_unrolling[0]['O'])}
mem_len = {'W': len(mem_scheme.mem_type['W']),
'I': len(mem_scheme.mem_type['I']),
'O': len(mem_scheme.mem_type['O'])}
for operand in ['W','I','O']:
if su_len[operand] > mem_len[operand]+1:
mem_scheme.spatial_unrolling[0][operand] = mem_scheme.spatial_unrolling[0][operand][:mem_len[operand]+1]
mem_scheme.flooring[0][operand] = mem_scheme.flooring[0][operand][:mem_len[operand]+1]
elif su_len[operand] < mem_len[operand]+1:
append_su = [[]]*(mem_len[operand] + 1 -su_len[operand])
mem_scheme.spatial_unrolling[0][operand].extend(append_su)
mem_scheme.flooring[0][operand].extend(append_su)
return mem_scheme
def get_mem_complete_unrolling_count(spatial_unrolling, flooring, array_size):
"""
This function compute the complete memory unrolling count (active ones + inactive ones) for later area estimation.
"""
XY_dimension_unrolling = [[], []]
XY_dimension_unit_count = [
{'W': [1] * len(flooring['W']), 'I': [1] * len(flooring['I']), 'O': [1] * len(flooring['O'])},
{'W': [1] * len(flooring['W']), 'I': [1] * len(flooring['I']), 'O': [1] * len(flooring['O'])}]
XY_dimension_mem_count_active = [
{'W': [1] * (len(flooring['W'])-1), 'I': [1] * (len(flooring['I'])-1), 'O': [1] * (len(flooring['O'])-1)},
{'W': [1] * (len(flooring['W'])-1), 'I': [1] * (len(flooring['I'])-1), 'O': [1] * (len(flooring['O'])-1)}]
XY_dimension_mem_count_total = [
{'W': [1] * (len(flooring['W'])-1), 'I': [1] * (len(flooring['I'])-1), 'O': [1] * (len(flooring['O'])-1)},
{'W': [1] * (len(flooring['W'])-1), 'I': [1] * (len(flooring['I'])-1), 'O': [1] * (len(flooring['O'])-1)}]
mem_count_active = {'W': [1] * (len(flooring['W']) - 1), 'I': [1] * (len(flooring['I']) - 1),
'O': [1] * (len(flooring['O']) - 1)}
mem_count_total = {'W': [1] * (len(flooring['W'])-1), 'I': [1] * (len(flooring['I'])-1),
'O': [1] * (len(flooring['O'])-1)}
XY_dimension_area_utilize = [{'W': 0, 'I': 0, 'O': 0},
{'W': 0, 'I': 0, 'O': 0}]
op_ir_loops = {'W': [3, 4, 7], 'I': [6], 'O': [1, 2, 5]}
for floor_level in flooring['W']:
if floor_level:
for XY, floor_XY in enumerate(floor_level):
if floor_XY:
XY_dimension_unrolling[XY].extend(floor_XY)
for op in ['W', 'I', 'O']:
for level, floor_level in enumerate(flooring[op]):
if floor_level:
i = 0
for XY, floor_XY in enumerate(floor_level):
if floor_XY:
for floor_single in floor_XY:
if spatial_unrolling[op][level][i][0] != floor_single:
raise ValueError("spatial_unrolling's and flooring's order do not match.")
XY_dimension_unit_count[XY][op][level] *= spatial_unrolling[op][level][i][1]
i += 1
for XY in range(len(XY_dimension_unit_count)):
for op in ['W', 'I', 'O']:
XY_dimension_area_utilize[XY][op] = prod(XY_dimension_unit_count[XY][op]) / array_size[XY]
for level in range(1, len(XY_dimension_unit_count[XY][op])):
XY_dimension_mem_count_active[XY][op][level-1] = prod(XY_dimension_unit_count[XY][op][level:])
for op in ['W', 'I', 'O']:
for level in range(1, len(spatial_unrolling[op])):
if spatial_unrolling[op][level]:
for XY in [0, 1]:
if all(loop_type in op_ir_loops[op] for loop_type in XY_dimension_unrolling[XY]):
XY_dimension_mem_count_total[XY][op][level-1] = XY_dimension_mem_count_active[XY][op][level-1]
else:
XY_dimension_mem_count_total[XY][op][level - 1] = \
int(round(XY_dimension_mem_count_active[XY][op][level-1]/XY_dimension_area_utilize[XY][op]))
for op in ['W', 'I', 'O']:
for level in range(len(XY_dimension_mem_count_active[0][op])):
mem_count_active[op][level] = XY_dimension_mem_count_active[0][op][level] * \
XY_dimension_mem_count_active[1][op][level]
mem_count_total[op][level] = XY_dimension_mem_count_total[0][op][level] * \
XY_dimension_mem_count_total[1][op][level]
return mem_count_active, mem_count_total