This repository was archived by the owner on Aug 11, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathmsg.py
1813 lines (1636 loc) · 85.3 KB
/
msg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import numpy as np
from itertools import combinations
from itertools import product
from itertools import combinations_with_replacement
from copy import deepcopy
import pickle
from classes import Layer
from math import log
import bsgutils as su
import sys
class MemoryNode:
def __init__(self, memory_level, operand, cluster_level, fixed, unique_name=None):
self.memory_level = memory_level
self.operand = operand
self.cluster_level = cluster_level
self.fixed = fixed
self.unique_name = unique_name
self.read_from_above_cost = {}
self.write_to_above_cost = {}
def __hash__(self):
return id(self)
def __eq__(self, other):
if isinstance(other, self.__class__):
return self.__dict__ == other.__dict__
else:
return False
def __ne__(self, other):
return not self.__eq__(other)
def __lt__(self, other):
if isinstance(other, self.__class__):
if self.cluster_level < other.cluster_level:
return True
elif self.cluster_level == other.cluster_level:
if self.memory_level['size_bit'] < other.memory_level['size_bit']:
return True
else:
return False
def __gt__(self, other):
if isinstance(other, self.__class__):
if self.cluster_level > other.cluster_level:
return True
elif self.cluster_level == other.cluster_level:
if self.memory_level['size_bit'] > other.memory_level['size_bit']:
return True
else:
return False
def set_read_from_above_cost(self, op, cost):
'''
Method to set the cost of reading from the node that is directly above this one in the hierarchy.
As this node might hold mulitple operands, we use a dictionary.
'''
self.read_from_above_cost[op] = cost
def set_write_to_above_cost(self, op, cost):
'''
Method to set the cost of writing to the node that is directly above this one in the hierarchy.
As this node might hold mulitple operands, we use a dictionary.
'''
self.write_to_above_cost[op] = cost
class MemorySchemeNode:
def __init__(self, temp_comb):
self.memory_scheme = set()
self.temp_comb = temp_comb
def __hash__(self):
return id(self)
def __eq__(self, other):
if isinstance(other, self.__class__):
return self.memory_scheme == other.memory_scheme
else:
return False
def __ne__(self, other):
return not self.__eq__(other)
class MemoryScheme:
spatial_unrolling = []
flooring = []
fraction_spatial_unrolling = []
greedy_mapping_flag = []
footer_info = []
su_utilization = []
col2im_spatial_unrolling = []
col2im_flooring = []
col2im_fraction_spatial_unrolling = []
# the complete memory unrolling count
# this parameter is used for total area estimation (<-> active area)
mem_unroll_complete = []
def __init__(self, mem_name, mem_size, mem_cost, mem_utilization_rate, mem_utilization_rate_fixed, mem_share,
mem_unroll, mem_fifo, mem_bw, mem_type, mem_area, mem_nbanks, nodes):
self.mem_name = mem_name
self.mem_size = mem_size
self.mem_cost = mem_cost
self.mem_utilization_rate = mem_utilization_rate
self.mem_utilization_rate_fixed = mem_utilization_rate_fixed
self.mem_share = mem_share
self.mem_unroll = mem_unroll
self.mem_fifo = mem_fifo
self.mem_bw = mem_bw
self.mem_type = mem_type
self.mem_area = mem_area
self.mem_nbanks = mem_nbanks
self.nodes = nodes
def __eq__(self, other):
if isinstance(other, self.__class__):
return self.__dict__ == other.__dict__
else:
return False
def set_spatial_unrolling_flooring(self, spatial_unrolling, flooring):
self.spatial_unrolling = spatial_unrolling
self.flooring = flooring
def set_fraction_spatial_unrolling(self, fraction_spatial_unrolling):
self.frac_spatial_unrolling = fraction_spatial_unrolling
def set_im2col_parameters(self, col2im_spatial_unrolling, col2im_flooring, col2im_fraction_spatial_unrolling):
self.col2im_spatial_unrolling = col2im_spatial_unrolling
self.col2im_flooring = col2im_flooring
self.col2im_fraction_spatial_unrolling = col2im_fraction_spatial_unrolling
def fix_best_scheme(old_best_scheme, new_best_scheme, mem_pool):
# !! Only used for iterative search of architecture !!
fixed_scheme = MemorySchemeNode([])
not_fixed_scheme = MemorySchemeNode([])
if old_best_scheme != None:
for new_mem_level in new_best_scheme.memory_scheme:
fixed = 0
for old_mem_level in old_best_scheme.memory_scheme:
new_mem_level_op_list = list(new_mem_level.operand)
new_mem_level_op_list.sort()
old_mem_level_op_list = list(old_mem_level.operand)
old_mem_level_op_list.sort()
if new_mem_level.memory_level['size_bit'] == old_mem_level.memory_level['size_bit'] and \
new_mem_level.memory_level['unroll'] == old_mem_level.memory_level['unroll'] and \
new_mem_level.memory_level['mem_type'] == old_mem_level.memory_level['mem_type'] and \
new_mem_level_op_list == old_mem_level_op_list:
tmp_mem_level = None
for mp in mem_pool:
if mp['size_bit'] == new_mem_level.memory_level['size_bit'] and new_mem_level.memory_level[
'mem_type'] == mp['mem_type']:
tmp_mem_level = mp
tmp_mem_level['unroll'] = new_mem_level.memory_level['unroll']
break
fixed = 1
fixed_scheme.memory_scheme.add(
MemoryNode(tmp_mem_level, new_mem_level.operand, new_mem_level.cluster_level, fixed))
break
if fixed == 0:
for mp in mem_pool:
if mp['size_bit'] == new_mem_level.memory_level['size_bit'] and new_mem_level.memory_level[
'mem_type'] == mp['mem_type']:
tmp_mem_level = mp
tmp_mem_level['unroll'] = new_mem_level.memory_level['unroll']
break
fixed = 0
not_fixed_scheme.memory_scheme.add(
MemoryNode(tmp_mem_level, new_mem_level.operand, new_mem_level.cluster_level, fixed))
return fixed_scheme, not_fixed_scheme
def update_mem_pool(partial_pool, memory_pool, not_fixed_scheme, memory_hierarchy_ratio):
# !! Only used for iterative search of architecture !!
if partial_pool:
max_mem = 0
max_mem_level = None
min_mem = float('inf')
min_mem_level = None
tmp_mem_node_list = []
for mem in partial_pool:
if mem['size_bit'] >= max_mem:
max_mem = mem['size_bit']
max_mem_level = deepcopy(mem)
if mem['size_bit'] <= min_mem:
min_mem = mem['size_bit']
min_mem_level = deepcopy(mem)
partial_pool.remove(max_mem_level)
for memory in not_fixed_scheme.memory_scheme:
if memory.memory_level['size_bit'] == max_mem and memory.fixed == 0:
tmp_max_level = deepcopy(max_mem_level)
tmp_max_level['unroll'] = memory.memory_level['unroll']
mn = MemoryNode(tmp_max_level, memory.operand, memory.cluster_level, memory.fixed)
tmp_mem_node_list.append(mn)
min_mem_mhr = min_mem # / memory_hierarchy_ratio
max_mem = 0
max_mem_level = None
for mem in memory_pool:
if mem['size_bit'] < min_mem_mhr and mem['size_bit'] >= max_mem:
max_mem = mem['size_bit']
max_mem_level = deepcopy(mem)
if max_mem_level != None:
partial_pool.append(max_mem_level)
else:
max_mem = 0
max_mem_level = None
tmp_mem_node_list = []
for mem in memory_pool:
if mem['size_bit'] >= max_mem:
max_mem = mem['size_bit']
max_mem_level = deepcopy(mem)
partial_pool.append(max_mem_level)
max_mem_mhr = max_mem # / memory_hierarchy_ratio
max_mem = 0
max_mem_level = None
for mem in memory_pool:
if mem['size_bit'] < max_mem_mhr and mem['size_bit'] >= max_mem:
max_mem = mem['size_bit']
max_mem_level = deepcopy(mem)
partial_pool.append(max_mem_level)
return partial_pool, tmp_mem_node_list
def get_available_area(max_area, memory_scheme_node):
occupied_area = 0
for mem_node in memory_scheme_node.memory_scheme:
occupied_area += min(mem_node.memory_level['area']) * mem_node.memory_level['unroll']
available_area = (float(max_area) - occupied_area)
return available_area
def array_mem_pool(mem_pool, array_size, area, PE_RF_size_threshold, tmp_mem_node_list, banking, L1_size, L2_size):
# Generate pool of memories that include the unrolled versions across the PE array
# if their bit size is lower than PE_RF_size_threshold
# Only 2D array for now
array_pool = []
update_mem_pool = [] # deepcopy(mem_pool)
for l1 in L1_size:
for mem in mem_pool:
if mem['size_bit'] > PE_RF_size_threshold:
nbanks = l1 / mem['size_bit']
if nbanks in banking and mem['area'][0] * nbanks < area:
tmp_mem = {'size_bit': l1, 'area': [mem['area'][0] * nbanks],
'unroll': mem['unroll'], 'nbanks': nbanks}
update_mem_pool.append(tmp_mem)
# print(l1)
# break
for l2 in L2_size:
for mem in mem_pool:
if mem['size_bit'] > PE_RF_size_threshold:
nbanks = l2 / mem['size_bit']
if nbanks in banking: # and nbanks %4 == 0:
tmp_mem = {'size_bit': l2, 'area': [mem['area'][0] * nbanks],
'unroll': mem['unroll'], 'nbanks': nbanks}
update_mem_pool.append(tmp_mem)
break
for mem in mem_pool:
if mem['size_bit'] <= PE_RF_size_threshold:
tmp_mem = {'size_bit': mem['size_bit'], 'area': [mem['area'][0]],
'unroll': np.prod(array_size), 'nbanks': 1}
size_list = [x['size_bit'] for x in update_mem_pool]
if mem['size_bit'] not in size_list:
update_mem_pool.append(tmp_mem)
# for mem in update_mem_pool:
# if mem['size_bit'] > PE_RF_size_threshold:
# array_pool.append(deepcopy(mem))
#
return update_mem_pool
def fitting_memories(array_mem_pool, area, max_area, utilization_rate, L1_size, L2_size, occupied_area=0):
# Create a list of combinations of memories drawn from array_mem_pool
# that fit in max_area and are above the utilization_rate set
# The memories DO NOT have operand(s) assigned to them yet
fitting_comb = []
if area == 0:
return fitting_comb
array_mem_pool_index = list(range(0, len(array_mem_pool)))
for k in range(0, len(array_mem_pool) ** 2):
print('\r memory combination ', k + 1, '/', len(array_mem_pool) + 1, ' fitting list:', len(fitting_comb),
end="")
# Create combination with repetition of memories from array_mem_pool
# The repetition is due to the fact that the same memory can hold a different operand
mem_combinations = combinations_with_replacement(array_mem_pool_index, k)
oldfclen = fitting_comb.__len__()
for comb in mem_combinations:
comb = list(comb)
size_bit_list = [array_mem_pool[x]['size_bit'] for x in comb]
unique_mems = [size_bit_list.count(x) for x in size_bit_list]
L1_count = 0
L2_count = 0
sblx = []
for ii_sbl, sbl in enumerate(size_bit_list):
if sbl not in sblx:
if sbl in L1_size:
L1_count += unique_mems[ii_sbl]
if sbl in L2_size:
L2_count += unique_mems[ii_sbl]
sblx.append(sbl)
# The following if prunes away those combinations of memories where
# an equal memory is present more than three times.
# This is due to the fact that there can't be more than 3 operand
if unique_mems:
if max(unique_mems) > 3:
continue
if L1_count > 3 or L2_count > 3:
continue
comb_mem_area = [min(array_mem_pool[x]['area']) * array_mem_pool[x]['unroll'] for x in comb]
# Check if the combination fits area and is above the utilization rate
if np.sum(comb_mem_area) <= area:
if (np.sum(comb_mem_area) + occupied_area) / float(max_area) >= utilization_rate:
mem_comb = [array_mem_pool[x] for x in comb]
if mem_comb not in fitting_comb:
fitting_comb.append(mem_comb)
if oldfclen == fitting_comb.__len__() and oldfclen != 0:
break
return fitting_comb
def memory_scheme_generator_cluster(memory_comb, memory_pool, array_dimension, mem_sn, max_area, utilization_rate_area,
tmp_mem_node_list, PE_RF_size_threshold, banking, L1_size, L2_size):
memory_schemes_list = []
size_bit_list = [x['size_bit'] for x in memory_comb]
unroll_list = [x['unroll'] for x in memory_comb]
total_size_list = list(np.multiply(size_bit_list, unroll_list))
index_smallest_memory = total_size_list.index(min(total_size_list))
is_over = False
init_scheme = MemorySchemeNode(memory_comb)
if mem_sn.memory_scheme:
for mem in mem_sn.memory_scheme:
init_scheme.memory_scheme.add(mem)
# layer and nextLayer are NOT the neural network layers but a list of MemorySchemeNode objects
layer = []
nextLayer = [init_scheme]
# Assign iteratively the smallest memory still to be assigned to an operand(s)
while not is_over:
nextLayer = clean_memory_schemes(nextLayer)
# The while loop is broken if all the memories in temp_comb for each MemorySchemeNode
# have been assigned to an operand
if all([not x.temp_comb for x in nextLayer]):
is_over = True
break
layer = deepcopy(nextLayer)
nextLayer.clear()
for msn in layer: # msn is a single memory scheme node(with mem_scheme and temp_comb), incompleted
# Find the smallest memory still to be assigned to an operand
# contained in temp_comb
size_bit_list = [x['size_bit'] for x in msn.temp_comb]
unroll_list = [x['unroll'] for x in msn.temp_comb]
total_size_list = [[], []]
total_size_list[0] = list(np.multiply(size_bit_list, unroll_list))
total_size_list[1] = unroll_list
index_smallest_memory = total_size_list[0].index(min(total_size_list[0]))
if total_size_list[0].count(min(total_size_list[0])) > 1:
max_unroll = 0
for i_sl, sl in enumerate(total_size_list[0]):
if sl == min(total_size_list[0]):
if total_size_list[1][i_sl] >= max_unroll:
max_unroll = total_size_list[1][i_sl]
for i_sl, sl in enumerate(total_size_list[0]):
if total_size_list[0][i_sl] == min(total_size_list[0]) and total_size_list[1][i_sl] == max_unroll:
index_smallest_memory = i_sl
break
operand_irrelevant = {'W': [7, 3, 4], 'I': [6], 'O': [1, 2, 5]}
# The k_list defines what length of combinations of operands can be defined
# EG k = 1 -> ('I'), ('O'), ('W') assigned separately to the smallest memory, no shared cases
# EG k = 2 -> ('I','O'), ('I','W'), ('W','O'), ... shared case with 2 operands
# Moreover, the k can be defined separately for memory within the PE array and outside
if size_bit_list[index_smallest_memory] in L1_size: # PE_RF_size_threshold:
k_list = [1, 2, 3] # for group 1
elif size_bit_list[index_smallest_memory] in L2_size: # PE_RF_size_threshold:
k_list = [3]
else:
k_list = [1]
for k in k_list:
operand_comb = combinations(['I', 'O', 'W'], k)
for oc in operand_comb:
if any([msn.temp_comb[index_smallest_memory] == m.memory_level for m in tmp_mem_node_list]):
oc_list = [m.operand for m in tmp_mem_node_list if
m.memory_level == msn.temp_comb[index_smallest_memory]]
if oc not in oc_list:
continue
if msn.temp_comb[index_smallest_memory]['size_bit'] in L1_size:
if any([x.memory_level['size_bit'] in L1_size for x in msn.memory_scheme \
if any([opx in oc for opx in x.operand])]):
continue
if msn.temp_comb[index_smallest_memory]['size_bit'] in L2_size:
if any([x.memory_level['size_bit'] in L2_size for x in msn.memory_scheme \
if any([opx in oc for opx in x.operand])]):
continue
memory_node = MemoryNode(msn.temp_comb[index_smallest_memory], oc, 0, 0)
memory_operand_list = [x.memory_level for x in msn.memory_scheme if
set(x.operand).intersection(set(oc))]
memory_operand_list_unroll = [x['unroll'] for x in memory_operand_list]
if memory_operand_list:
if any([memory_node.memory_level['size_bit'] == x['size_bit'] for x in
memory_operand_list]):
continue
new_memory_comb = deepcopy(msn.temp_comb)
new_memory_comb.remove(msn.temp_comb[index_smallest_memory])
new_msn = deepcopy(msn)
new_msn.temp_comb = new_memory_comb
new_msn.memory_scheme.add(memory_node)
nextLayer.append(new_msn)
architecture_list = []
mem_sn_list = [[x.memory_level['size_bit'], list(x.operand)] for x in mem_sn.memory_scheme]
for s in nextLayer:
# print('NEW SCHEME')
m_list = []
for ii_m, m in enumerate(s.memory_scheme):
m_list.append([])
if [m.memory_level['size_bit'], list(m.operand)] in mem_sn_list:
tmpx = [x for x in mem_sn.memory_scheme if
[x.memory_level['size_bit'], list(x.operand)] == [m.memory_level['size_bit'], list(m.operand)]]
tmpx = tmpx[0]
m_list[ii_m].append(tmpx)
else:
for mem in memory_pool:
nbanks = m.memory_level['size_bit'] / mem['size_bit']
if nbanks in banking and mem['area'][0] * nbanks < max_area:
if mem['size_bit'] * nbanks <= PE_RF_size_threshold:
unroll_factor = np.prod(array_dimension)
else:
unroll_factor = 1
tmp_mem = {'name': mem['name'], 'size_bit': mem['size_bit'] * nbanks,
'area': [mem['area'][0] * nbanks],
'cost': [[mem['cost'][0][0] * nbanks, mem['cost'][0][1] * nbanks]],
'mem_bw': [[mem['mem_bw'][0][0] * nbanks, mem['mem_bw'][0][1] * nbanks]],
'mem_type': mem['mem_type'], 'unroll': unroll_factor,
'utilization_rate': mem['utilization_rate'],
'mem_fifo': mem['mem_fifo'], 'nbanks': nbanks}
t_m = MemoryNode(tmp_mem, m.operand, m.cluster_level, m.fixed)
m_list[ii_m].append(t_m)
break
s_comb = product(*m_list)
s_combx = [s for s in s_comb]
for s_c in s_combx:
msc_sc = MemorySchemeNode([])
for m_node in s_c:
msc_sc.memory_scheme.add(m_node)
architecture_list.append(msc_sc)
memory_schemes_list += architecture_list # nextLayer
memory_schemes_list = check_memory_schemes(memory_schemes_list, array_dimension, float(max_area),
utilization_rate_area)
return memory_schemes_list
def check_memory_schemes(memory_scheme_list, array_dimension, max_area, utilization_rate_area):
# Check whether each memory scheme contained in memory scheme list respect the hardware constraints
# of max area and utilization rate
good_list = []
for ms in memory_scheme_list:
total_area = 0
if all([any([x in mn.operand for mn in ms.memory_scheme]) for x in ['W', 'I', 'O']]):
for memory_node in ms.memory_scheme:
area_memory = min(memory_node.memory_level['area']) * memory_node.memory_level['unroll']
total_area += area_memory
if utilization_rate_area <= total_area / max_area <= 1:
good_list.append(ms)
return good_list
def clean_memory_schemes(memory_scheme_list):
# Remove duplicates from memory_scheme_list
good_list = []
if memory_scheme_list:
good_list = [memory_scheme_list[0]]
for i, msn in enumerate(memory_scheme_list):
ms_good_list = [x.memory_scheme for x in good_list]
ms_check = msn.memory_scheme
node_present = True
node_equal = []
for ms in ms_good_list:
for x in ms_check:
if x not in list(ms):
node_present = False
node_equal.append(node_present)
break
if len(node_equal) == len(ms_good_list):
good_list.append(msn)
return good_list
def memory_scheme_generator(mem_pool, array_dimension, max_area, utilization_rate_area,
memory_hierarchy_ratio, prune_PE_RF,
PE_RF_size_threshold, PE_RF_depth, CHIP_depth, banking, L1_size, L2_size,
memory_scheme_hint=MemorySchemeNode([]), tmp_mem_node_list=[], single_sim=0):
memory_scheme_list = []
tmp_msn = memory_scheme_hint
tmp_memory_scheme_list = [tmp_msn]
memory_scheme_list = deepcopy(tmp_memory_scheme_list)
memory_scheme_list = clean_memory_schemes(memory_scheme_list)
tmp_memory_scheme_list.clear()
schemes = None
if not single_sim:
for i, memory_scheme in enumerate(memory_scheme_list):
area = get_available_area(max_area, memory_scheme)
array_pool = array_mem_pool(mem_pool, array_dimension, area, PE_RF_size_threshold, tmp_mem_node_list,
banking, L1_size, L2_size)
memory_comb_list = fitting_memories(array_pool, area, float(max_area), utilization_rate_area, L1_size,
L2_size, float(max_area) - area)
for ii_mc, memory_comb in enumerate(memory_comb_list):
if not memory_comb:
continue
ms_list = memory_scheme_generator_cluster(memory_comb, mem_pool, array_dimension, memory_scheme,
float(max_area), utilization_rate_area, tmp_mem_node_list,
PE_RF_size_threshold, banking, L1_size, L2_size)
if not ms_list:
ms_list.append(memory_scheme)
tmp_memory_scheme_list += mem_scheme_not_ordered_check(ms_list, memory_hierarchy_ratio, array_dimension,
prune_PE_RF, PE_RF_size_threshold, PE_RF_depth,
CHIP_depth)
print('\r Area-fitting memory combination: ', ii_mc + 1, '/', len(memory_comb_list),
'| Valid hierarchy found: ', len(tmp_memory_scheme_list), end='')
print()
memory_scheme_list = clean_memory_schemes(tmp_memory_scheme_list)
tmp_memory_scheme_list.clear()
schemes = check_memory_schemes(memory_scheme_list, array_dimension, float(max_area), utilization_rate_area)
else:
schemes = memory_scheme_list
return schemes
def msg(mem_pool, array_dimension, max_area, utilization_rate_area, memory_hierarchy_ratio, prune_PE_RF,
PE_RF_size_threshold, PE_RF_depth, CHIP_depth, tmp_msn, mh_name, tmp_node_list, single_sim, banking, L1_size, L2_size):
memory_scheme_list = memory_scheme_generator(mem_pool, array_dimension, max_area, utilization_rate_area,
memory_hierarchy_ratio, prune_PE_RF, PE_RF_size_threshold, PE_RF_depth,
CHIP_depth, banking, L1_size, L2_size, tmp_msn, tmp_node_list,
single_sim)
ms_list = []
# Conversion from memory_pool format to framework input format
for memory_scheme_node in memory_scheme_list:
mem_name = {'W': [], 'I': [], 'O': []}
mem_size = {'W': [], 'I': [], 'O': []}
mem_area = {'W': [], 'I': [], 'O': []}
mem_share = {}
mem_word_cost = {'W': [], 'I': [], 'O': []}
mem_type = {'W': [], 'I': [], 'O': []}
mem_utilization_rate = {'W': [], 'I': [], 'O': []}
mem_utilization_rate_fix = {'W': [], 'I': [], 'O': []}
mem_unroll = {'W': [], 'I': [], 'O': []}
mem_fifo = {'W': [], 'I': [], 'O': []}
mem_bw = {'W': [], 'I': [], 'O': []}
mem_nbanks = {'W': [], 'I': [], 'O': []}
mem_ops = {'W': [], 'I': [], 'O': []}
if not single_sim: # reset the mh_name
mh_name = {'W':[], 'I': [], 'O': []}
mem_list = [x for x in memory_scheme_node.memory_scheme]
for op in ['W', 'I', 'O']:
mem_list_op = [x for x in mem_list if op in x.operand]
mem_list_op.sort()
for mn in mem_list_op:
mem_name[op].append(mn.memory_level['name'])
mem_size[op].append(mn.memory_level['size_bit'])
mem_area[op].append(mn.memory_level['area'])
mem_utilization_rate[op].append(mn.memory_level['utilization_rate'])
mem_utilization_rate_fix[op].append(mn.memory_level['utilization_rate'])
mem_word_cost[op].append(mn.memory_level['cost'])
mem_bw[op].append(mn.memory_level['mem_bw'])
mem_type[op].append(mn.memory_level['mem_type'])
mem_unroll[op].append(mn.memory_level['unroll'])
mem_fifo[op].append(mn.memory_level['mem_fifo'])
mem_nbanks[op].append(mn.memory_level['nbanks'])
mem_ops[op].append(mn.operand)
if not single_sim: # if doing hierarchy search mh_name will be empty
unique_name = mn.memory_level['name'] + '_' + "".join(mn.operand)
mn.unique_name = unique_name
mh_name[op].append(unique_name)
for mem in mem_list:
if len(mem.operand) > 1:
shared_list = []
for i in range(len(mem.operand)):
shared_mem = (mem.operand[i], mem_size[mem.operand[i]].index(mem.memory_level['size_bit']))
shared_list.append(shared_mem)
mem_share[len(mem_share)] = shared_list
# LOMA: Construct structured list of memory nodes present in architecture,
# going from left (closest to PE) to right (closest to off-chip DRAM)
# inserted with None(s) if an operand has less levels than the max # levels for any operand
max_levels = max([len(mh_name[op]) for op in ['W','I','O']])
mh_name_with_none = deepcopy(mh_name)
for op in ['W','I','O']:
last_shared_level = -1
mem_levels_op = len(mh_name[op])
if mem_levels_op < max_levels:
for mem_level in range(mem_levels_op):
if len(mem_ops[op][mem_level]) > 1:
last_shared_level = mem_level
for shared_op in mem_ops[op][mem_level]:
# shared_op = mem_ops[op][mem_level][1]
index_shared_op = mh_name[shared_op].index(mh_name[op][mem_level])
if index_shared_op > mem_level:
mh_name_with_none[op].insert(mem_level, None)
break
# Check if there are still less levels for this operand (possible if all non-shared)
# If so, insert None(s) at position after last shared level, as it will give better OMA search time.
# This is because last level is discarded for TM search using OMA.
mem_levels_op_updated = len(mh_name_with_none[op])
if mem_levels_op_updated < max_levels:
difference = int(max_levels - mem_levels_op_updated)
for _ in range(difference):
mh_name_with_none[op].insert(last_shared_level + 1, None)
mh_name_left_to_right = zip(mh_name_with_none['W'], mh_name_with_none['I'], mh_name_with_none['O'])
# Remove duplicate elements at each level
seen = set()
mh_name_left_to_right = [[x for x in seq if x not in seen and not seen.add(x)]
for seq in mh_name_left_to_right]
# Construct the node list for each memory level
nodes_set = memory_scheme_node.memory_scheme
nodes = []
for mem_level, seq in enumerate(mh_name_left_to_right):
nodes_level = []
for unique_name in seq:
# find corresponding node in the set by iterating through it
for node in nodes_set:
if node.unique_name == unique_name:
nodes_level.append(deepcopy(node))
if mem_level == 0:
break # we have found corresponding node
else:
# find the node(s) in the below levels connected to this one
for op in node.operand:
found = False
for level_below in range(mem_level-1, -1, -1): # [mem_level-1, mem_level-2, ..., 0]
for node_below in nodes[level_below]:
if op in node_below.operand:
found = True
node_below.set_read_from_above_cost(op, node.memory_level["cost"][0][0])
node_below.set_write_to_above_cost(op, node.memory_level["cost"][0][0])
break
if found:
break
nodes.append(nodes_level)
ms = MemoryScheme(mem_name, mem_size, mem_word_cost, mem_utilization_rate, mem_utilization_rate_fix, mem_share,
mem_unroll, mem_fifo, mem_bw, mem_type, mem_area, mem_nbanks, nodes)
ms_list.append(ms)
return ms_list, memory_scheme_list
def mem_scheme_not_ordered_check(mem_scheme_set_list, memory_hierarchy_ratio, array_dimension, prune_PE_RF,
PE_RF_size_threshold, PE_RF_depth, CHIP_depth):
good_list = []
operand_irrelevant = {'W': [7, 3, 4], 'I': [6], 'O': [1, 2, 5]}
for ii_memscheme, mem_scheme in enumerate(mem_scheme_set_list):
ii_memscheme += 1
# print('\r mem check: ', ii_memscheme, '/', len(mem_scheme_set_list), ' good schemes: ', len(good_list), end="")
mem_scheme_fit = True
# Check if last level for each operand meets memory requirements of the operand it holds
for operand in ['W', 'I', 'O']:
memory_operand_list = [x for x in mem_scheme.memory_scheme if
set(x.operand).intersection(set(operand))]
memory_operand_list_size = [x.memory_level['size_bit'] for x in memory_operand_list]
PE_mo_size = 0
for mol in memory_operand_list_size:
if mol <= PE_RF_size_threshold:
PE_mo_size += 1
# if memory_operand_list_size:
# if max(memory_operand_list_size) != 416777216:
# mem_scheme_fit = False
# break
# Check if the depth parameters set are respected
if PE_mo_size > PE_RF_depth or PE_mo_size == 0 or len(
memory_operand_list) - PE_mo_size > CHIP_depth: # or memory_operand_list_size.__len__() - PE_RF_depth < CHIP_depth:
mem_scheme_fit = False
# print(PE_mo_size, PE_RF_depth,'Not all operands are present in this scheme')
break
# Check if two consecutive levels in the hierarchy for an operand have increasing unrolling
# If so, prune away
mo_unroll_list = [mo.memory_level['unroll'] for mo in memory_operand_list]
for mo_u in mo_unroll_list:
if mo_u != 1:
for mo_u2 in mo_unroll_list:
if mo_u2 < mo_u and mo_u % mo_u2 != 0:
mem_scheme_fit = False
break
# Check if the size of memories within the PE array is below PE_RF_size_threshold (redundant)
if prune_PE_RF:
for mo in memory_operand_list:
if mo.memory_level['unroll'] == array_dimension[0] * array_dimension[1]:
if mo.memory_level['size_bit'] > PE_RF_size_threshold:
mem_scheme_fit = False
break
if mo.memory_level['size_bit'] < PE_RF_size_threshold:
if mo.memory_level['unroll'] == 1:
mem_scheme_fit = False
break
memory_ratios = []
# Check if the memory scheme respects the memory hierarchy ratio
for m in memory_operand_list:
memory_ratios = [x.memory_level['size_bit'] / m.memory_level['size_bit'] for x in memory_operand_list if
x != m]
if any([x > 1 / memory_hierarchy_ratio and x < memory_hierarchy_ratio for x in memory_ratios]):
mem_scheme_fit = False
break
if mem_scheme_fit:
good_list.append(mem_scheme)
return good_list
# def mem_scheme_check(mem_scheme, spatial_unrolling, precision, layer):
#
# good_list = []
# operand_irrelevant = {'W': [7, 3, 4], 'I': [6], 'O': [1, 2, 5]}
#
# mem_scheme_fit = True
#
#
# operand_size = {}
# for operand in ['W', 'I', 'O']:
# if operand == 'W':
# operand_size['W'] = layer['FX'] * layer['FY'] * layer['C'] * layer['K'] * precision[operand]
# elif operand == 'O':
# operand_size['O'] = layer['OX'] * layer['OY'] * layer['K'] * layer['B'] * precision[operand]
# elif operand == 'I':
# operand_size['I'] = (layer['FX'] + layer['OX'] - 1) * (layer['FY'] + layer['OY'] - 1) * layer['C'] * \
# layer['B'] * precision[operand]
#
# # Check if last level for each operand meets memory requirements of the operand it holds
# for operand in ['W', 'I', 'O']:
# total_size = 0
# for i, mem_share_set in enumerate(mem_scheme.mem_share):
# if tuple([operand, len(mem_scheme.mem_size[operand]) - 1]) in mem_scheme.mem_share[mem_share_set]:
# total_size = np.sum([operand_size[op] for op in operand_size if op in [x[0] for x in mem_scheme.mem_share[mem_share_set]]])
# if mem_scheme.mem_size[operand][-1] < total_size:
# mem_scheme_fit = False
# break
# if total_size == 0:
# if mem_scheme.mem_size[operand][-1] < operand_size[operand]:
# mem_scheme_fit = False
# break
#
# # Check if the memory scheme can effectively contain the spatial unrollings of levels below
# if mem_scheme_fit:
# for operand in ['W', 'I', 'O']:
# shared = False
# for level, mem_level in enumerate(mem_scheme.mem_size[operand]):
# for i, mem_share_set in enumerate(mem_scheme.mem_share):
# if tuple([operand, level]) in mem_scheme.mem_share[mem_share_set]:
# tot_size = 0
# shared = True
# for mshared in mem_scheme.mem_share[mem_share_set]:
# block_size = precision[mshared[0]]
# for spatial_unrolling_level in range(0, mshared[1] + 1):
# for ur in spatial_unrolling[mshared[0]][spatial_unrolling_level]:
# if ur[0] not in operand_irrelevant[mshared[0]]:
# block_size *= ur[1]
# tot_size += block_size
# if tot_size > mem_level:
# print(tot_size, mem_level)
# mem_scheme_fit = False
# if not shared:
# block_size = precision[operand]
# for spatial_unrolling_level in range(0, level + 1):
# for ur in spatial_unrolling[operand][spatial_unrolling_level]:
# if ur[0] not in operand_irrelevant[operand]:
# block_size *= ur[1]
# if block_size > mem_level:
# mem_scheme_fit = False
#
#
# return mem_scheme_fit
def mem_scheme_fit_check(mem_idx, mem_scheme, precision, layer, layer_number):
mem_scheme_fit = True
for layer_idx, each_layer in layer.items():
if layer_idx in layer_number:
operand_size = {
'W': each_layer['FX'] * each_layer['FY'] * each_layer['C'] * each_layer['K'] * precision['W'],
'O': each_layer['OX'] * each_layer['OY'] * each_layer['K'] * each_layer['B'] * precision['O_final'],
'I': (each_layer['SX'] * (each_layer['OX'] - 1) +
each_layer['SFX'] * (each_layer['FX'] - 1) + 1) * \
(each_layer['SY'] * (each_layer['OY'] - 1) +
each_layer['SFY'] * (each_layer['FY'] - 1) + 1) * \
each_layer['C'] * each_layer['B'] * precision['I']}
# Check if the all the data can fit in the top level memory.
for operand in ['W', 'I', 'O']:
total_size = 0
for mem_share_set in mem_scheme.mem_share:
if tuple([operand, len(mem_scheme.mem_size[operand]) - 1]) in mem_scheme.mem_share[mem_share_set]:
shared_mem_list = [x[0] for x in mem_scheme.mem_share[mem_share_set]]
total_size = np.sum([operand_size[op] for op in operand_size if op in shared_mem_list])
if mem_scheme.mem_size[operand][-1] < total_size:
mem_scheme_fit = False
print('Memory Scheme %d cannot hold all the data in NN Layer %d.' % (mem_idx, layer_idx),
end=' | ')
print('Required memory size:', total_size, '<-> Available memory size:',
mem_scheme.mem_size[operand][-1], '(unit: bit)')
return mem_scheme_fit
if total_size == 0:
if mem_scheme.mem_size[operand][-1] < operand_size[operand]:
mem_scheme_fit = False
print('Memory Scheme %d cannot hold all the data in NN Layer %d.' % (mem_idx, layer_idx),
end=' | ')
print('Required memory size:', operand_size[operand], '<-> Available memory size:',
mem_scheme.mem_size[operand][-1], 'Operand:', operand, '(unit: bit)')
return mem_scheme_fit
return mem_scheme_fit
def loop_same_term_merge1(unmerged):
"""
This function merges same type of loops' dimension size at X/Y directions,
assuming same type of loops are close to each other.
"""
merged = []
# change data format from tuple to list
for level_list in unmerged:
merged.append([])
for loop_elem in level_list:
merged[-1].append(list(loop_elem))
# merge same type loops within X, Y unrolling list
for level, level_list in enumerate(unmerged):
if len(level_list) in [1, 0]:
continue
else:
va_clean_idx = 0
for va_idx in range(1, len(level_list)):
if level_list[va_idx - 1][0] == level_list[va_idx][0]:
merged[level][va_clean_idx][1] *= level_list[va_idx][1]
merged[level].remove(list(level_list[va_idx]))
va_clean_idx -= 1
va_clean_idx += 1
return merged
def loop_same_term_merge2(unmerged):
"""
This function merges same type of loops' dimension size at each level,
without assuming same type of loops are close to each other.
"""
merged = {'W': [], 'I': [], 'O': []}
merged_loop_type = {'W': [], 'I': [], 'O': []}
for operand in ['W', 'I', 'O']:
for level, level_list in enumerate(unmerged[operand]):
merged[operand].append([])
merged_loop_type[operand].append([])
if len(level_list) > 1:
for level_elem in level_list:
if level_elem[0] not in merged_loop_type[operand][-1]:
merged[operand][-1].append(deepcopy(level_elem))
merged_loop_type[operand][-1].append(level_elem[0])
else:
idx = merged_loop_type[operand][-1].index(level_elem[0])
merged[operand][-1][idx][1] *= level_elem[1]
return merged, merged_loop_type
def memory_unroll_candidate_gen(unrolling_scheme, layer):
""" This function generate EVEN/UNEVEN memory unroll candidate according to unrolling_scheme. """
B = 1
K = 1
C = 1
OY = 1
OX = 1
FY = 1
FX = 1
for unroll in unrolling_scheme:
for loop in unroll:
if loop[0] == 7:
B *= loop[1]
elif loop[0] == 6:
K *= loop[1]
elif loop[0] == 5:
C *= loop[1]
elif loop[0] == 4:
OY *= loop[1]
elif loop[0] == 3:
OX *= loop[1]
elif loop[0] == 2:
FY *= loop[1]
elif loop[0] == 1:
FX *= loop[1]
IX = layer['SX'] * (OX - 1) + layer['SFX'] * (FX - 1) + 1
IY = layer['SY'] * (OY - 1) + layer['SFY'] * (FY - 1) + 1
W_unroll = K * C * FY * FX
I_unroll = B * C * IX * IY
O_unroll = B * K * OY * OX
memory_unroll_candidate = {'W': W_unroll, 'I': I_unroll, 'O': O_unroll}
return memory_unroll_candidate
def spatial_unrolling_generator_uneven(mem_scheme, array_dimension, layer, precision, SU_threshold, SU_mode,
memory_unroll_fully_flexible):
spatial_loop_list = []
flooring_list = []
unrolling_scheme_list = unroll_scheme_list_generator(mem_scheme, array_dimension, layer, precision, SU_threshold,
SU_mode)
mem_unroll_candidates = []
unrolling_scheme_candidates = []
if memory_unroll_fully_flexible:
for i, unroll_i in enumerate(unrolling_scheme_list):
unrolling_scheme_list[i] = loop_same_term_merge1(unroll_i)
mem_unroll_candidate = memory_unroll_candidate_gen(unrolling_scheme_list[i], layer)
mem_unroll_candidates.append(mem_unroll_candidate)
unrolling_scheme_candidates.append(unrolling_scheme_list[i])
else:
mem_unroll = {'W': mem_scheme.mem_unroll['W'][0],
'I': mem_scheme.mem_unroll['I'][0],
'O': mem_scheme.mem_unroll['O'][0]}
for i, unroll_i in enumerate(unrolling_scheme_list):
unrolling_scheme_list[i] = loop_same_term_merge1(unroll_i)
mem_unroll_candidate = memory_unroll_candidate_gen(unrolling_scheme_list[i], layer)
if mem_unroll_candidate == mem_unroll:
mem_unroll_candidates.append(mem_unroll_candidate)
unrolling_scheme_candidates.append(unrolling_scheme_list[i])
# TODO remove the below "break" when later take interconnection cost into account
break
for i, unroll_i in enumerate(unrolling_scheme_candidates):
spatial_loop = {'W': [], 'I': [], 'O': []}
flooring = {'W': [], 'I': [], 'O': []}
for operand in ['W', 'I', 'O']:
spatial_loop[operand] = [[] for _ in range(len(mem_scheme.mem_size[operand]) + 1)]
flooring[operand] = [[[], []] for _ in range(len(mem_scheme.mem_size[operand]) + 1)]
for XY_dim, XY_list in enumerate(unroll_i):
for XY_elem in XY_list:
# Weight
if XY_elem[0] in [7, 4, 3]:
spatial_loop['W'][0].append(XY_elem)
flooring['W'][0][XY_dim].append(XY_elem[0])
else:
spatial_loop['W'][1].append(XY_elem)
flooring['W'][1][XY_dim].append(XY_elem[0])
# Input
if XY_elem[0] in [6]:
spatial_loop['I'][0].append(XY_elem)
flooring['I'][0][XY_dim].append(XY_elem[0])
else:
spatial_loop['I'][1].append(XY_elem)
flooring['I'][1][XY_dim].append(XY_elem[0])
# Output
if XY_elem[0] in [5, 2, 1]:
spatial_loop['O'][0].append(XY_elem)
flooring['O'][0][XY_dim].append(XY_elem[0])
else:
spatial_loop['O'][1].append(XY_elem)
flooring['O'][1][XY_dim].append(XY_elem[0])
# spatial_loop, flooring = loop_same_term_merge2(spatial_loop)
for op in ['W', 'I', 'O']:
for level, level_list in enumerate(flooring[op]):
if level_list == [[], []]:
flooring[op][level] = []
spatial_loop_list.append(spatial_loop)
flooring_list.append(flooring)
print('mem_unroll', i, mem_unroll_candidates[i])
print('spatial_loop', i, spatial_loop)
print('flooring', i, flooring)
print()