-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkMeansClustering.py
349 lines (288 loc) · 10.1 KB
/
kMeansClustering.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
"""Summary
File with functions to create and process clustering using the kMeans algorithm.
"""
import random
def calcMax(data):
"""Summary
Calculates the maximum from a collection of features
Args:
data (list): 2d data list
Returns:
list: List of maximums
"""
mxs = []
for i in range(len(data[0])):
max = 0
for feature in data:
if feature[i] > max:
max = feature[i]
mxs.append(max)
return mxs
def calcNearestCluster(feature, clusterCenters):
"""Summary
Calculate the distance of the current feature to each cluster
Args:
feature (list): Feature list
clusterCenters (list): List of cluster centers
Returns:
int: Index of the cluster the feature is closest to
"""
distances = []
for cluster in clusterCenters:
distance = 0
for i, center in enumerate(cluster):
distance += abs(center - feature[i])
distances.append(distance)
# find min
min = distances[0]
nearest = 0
for i, distance in enumerate(distances):
if distance <= min:
min = distance
nearest = i
return nearest
def normalizeShape(feature):
"""Summary
Normalize a feature by shape
Args:
feature (list): Feature list
Returns:
list: Normalized feature list
"""
# find average height
avg = 0
for val in feature:
avg += val
avg = avg / len(feature)
# divide each position by average
normalFeature = []
for val in feature:
normalFeature.append(val / avg)
return normalFeature
def calcNCShape(feature, clusterCenters):
"""Summary
Calculates the nearest cluster based on shape
Args:
feature (list): Feature list
clusterCenters (list): List of cluster centers
Returns:
int: Index of the nearest cluster
"""
normalFeature = normalizeShape(feature)
normalCenters = []
for center in clusterCenters:
normalCenters.append(normalizeShape(center))
return calcNearestCluster(normalFeature, normalCenters)
def calcCenters(cluster, data):
"""Summary
Calulates the centers for a cluster
Args:
cluster (list): Cluster to find the center of
data (list): 2D Data list
Returns:
list: List of centers for each feature in a cluster
"""
centers = []
for i in range(len(data[0])):
center = 0
numFeatures = 0
for feature in cluster:
center += data[feature][i]
numFeatures += 1
avgCenter = center / numFeatures
centers.append(avgCenter)
return centers
def isStable(memory): # return bool
"""Summary
Internal function to test stability of memory
Args:
memory (list):
Returns:
bool: Returns true if the memory is stable
"""
# look at general number of movers --> identify convergence of num movers
numMovers = memory[-1]
print('movers:', numMovers)
if numMovers == 0 or (len(memory) > 2 and (abs(memory[-2] - memory[-1]) <= .1 * memory[-2])
and memory[-1] < .25 * max(memory) and memory[-1] <= memory[-2]
and memory[-1] == min(memory)):
return True
return False
def init(numClusters, data):
"""Summary
Initializer
Args:
numClusters (int): Number of clusters
data (list): 2d list storing data
Returns:
(list, list, list): Tuple storing: List of clusters, list of cluster centers, list of previous feature locatoins
"""
clusters = [] # an array of feature indexes belong to each cluster
clusterCenters = [] # a center for each position of each cluster
prev = [] # tracks the previous location of each feature
for i in range(len(data)):
prev.append([])
mxs = calcMax(data)
# initialize clusters with random centers
while len(clusterCenters) < (numClusters):
clusters.append([])
centers = []
for i in range(len(data[0])):
# pick random value in the range of the data at that index
center = random.randint(0, int(mxs[i]))
centers.append(center)
clusterCenters.append(centers)
return clusters, clusterCenters, prev
# calculate final distances from each feature to their current cluster to assess the accuracy of the clustering
def finalDistance(clusters, clusterCenters, data):
"""Summary
Calculates final distances between features and their current clusters
Args:
clusters (list): List of clusters
clusterCenters (list): List of cluster centers
data (list): 2D data list
Returns:
int: Total distance between clusters and cluster centers
"""
totDist = 0
for i, cluster in enumerate(clusters):
clusterDist = 0
for feature in cluster:
featureDist = 0
for j, val in enumerate(data[feature]):
featureDist += abs(clusterCenters[i][j] - val)
clusterDist += featureDist
totDist += clusterDist
return totDist
# add return cluster centers and /0 error
def kCluster(numClusters, data, distCalc):
"""Summary
Generates kClusters
Args:
numClusters (int): Number of clusters
data (list): 2D data list
distCalc (int): Distance calculated using calculation methods
Returns:
(list, int): Returns The list of clusters and total distance between
features and their clusters
"""
if distCalc > 1:
print('Undefined distance measure. Use 0 for height or 1 for shape.')
return
clusters = [] # an array of feature indexes belonging to each cluster
clusterCenters = [] # a center for each position of each cluster
prev = [] # tracks the previous location of each feature
for i in range(len(data)):
prev.append(0)
mxs = calcMax(data)
# #initialize clusters with random centers
while len(clusterCenters) < (numClusters):
clusters.append([])
centers = []
for i in range(len(data[0])):
center = random.randint(0, int(mxs[i]))
centers.append(center)
clusterCenters.append(centers)
centers = []
# for i in range(len(data[0])):
# center=data[0][i]
# centers.append(center)
# clusterCenters.append(centers)
# clusters.append([])
# check prev
#prev = clusters
# clusters, clusterCenters,prev =init(numClusters,data)
#print('numcluster ',len(clusters) , len(clusterCenters))
stop = False
memory = []
First = True
# memory.append(len(data))
while stop == False:
movers = 0
# reset clusters
for i in range(numClusters): # [[],[],[],...]
clusters[i] = []
# assign new cluster for each feature
for i, feature in enumerate(data):
if distCalc == 0:
cluster = calcNearestCluster(
feature, clusterCenters) # cluster index
elif distCalc == 1:
cluster = calcNCShape(feature, clusterCenters)
clusters[cluster].append(i) # populate clusters
if First == True:
prev[i] = cluster
First = False
else:
if prev[i] != cluster:
movers += 1
prev[i] = cluster
# calc new centers for each cluster
for i, cluster in enumerate(clusters):
clusterCenters[i] = calcCenters(cluster, data)
memory.append(movers) # track how many features changed cluster
stop = isStable(memory) # stop condition
# calc final distance
totDistance = finalDistance(clusters, clusterCenters, data)
return clusters, totDistance
def oneCluster(graphArrays):
"""Summary
Finds a baseline to be used when the clustering type is set to auto.
Args:
graphArrays (list): 2D Input data list
Returns:
(list, int): Returns a list of all genes and totalDistance between features
"""
avgArray = []
for i in range(len(graphArrays[0])):
avgArray.append(0)
numArray = len(graphArrays)
for array in graphArrays:
for i in range(len(array)):
avgArray[i] += array[i]
for j in range(len(avgArray)):
avgArray[j] = avgArray[j] / numArray
totDistance = 0
for i in range(len(graphArrays)):
for j in range(len(avgArray)):
dist = abs(graphArrays[i][j] - avgArray[j])
totDistance += dist
clusters = []
clusters.append([])
clusters[0] = []
for i, feature in enumerate(graphArrays):
clusters[0].append(i)
return clusters, totDistance
def autoKCluster(data, distCalc, dist_stop = 0.2):
"""Summary
Generates clusters using autoK algorithm.
Args:
data (list): 2D list storing data
distCalc (int): Distance calculated using calculation methods
Returns:
list: Returns a list of clusters
"""
# get total distance from each cluster, stop when change in total distance from last cluser < dist_stop%
totDistancePerIteration = []
x, totDistance1 = oneCluster(data) # baseline
totDistancePerIteration.append(totDistance1)
diff = totDistance1
numClusters = 2
while diff > (dist_stop * (totDistancePerIteration[numClusters - 2])):
clusters, totDistance = kCluster(numClusters, data, distCalc)
totDistancePerIteration.append(totDistance)
diff = abs(
totDistancePerIteration[numClusters - 1] - totDistancePerIteration[numClusters - 2])
print(diff)
numClusters += 1
if len(totDistancePerIteration) == 1:
clusters, totDistance = oneCluster(data)
numClusters = 2
else:
diff = abs(totDistancePerIteration[1] - totDistancePerIteration[0])
if diff <= (dist_stop * (totDistancePerIteration[0])):
numClusters = 1
clusters, totDistance = kCluster(numClusters, data, distCalc)
numClusters = 2
print('Best clusters:', numClusters - 1)
return clusters