forked from PaddlePaddle/PaddleVideo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
142 lines (128 loc) · 4.93 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import random
import numpy as np
import paddle
from paddlevideo.tasks import (test_model, train_dali, train_model,
train_model_multigrid)
from paddlevideo.utils import get_config, get_dist_info
def parse_args():
parser = argparse.ArgumentParser("PaddleVideo train script")
parser.add_argument('-c',
'--config',
type=str,
default='configs/example.yaml',
help='config file path')
parser.add_argument('-o',
'--override',
action='append',
default=[],
help='config options to be overridden')
parser.add_argument('--test',
action='store_true',
help='whether to test a model')
parser.add_argument('--train_dali',
action='store_true',
help='whether to use dali to speed up training')
parser.add_argument('--multigrid',
action='store_true',
help='whether to use multigrid training')
parser.add_argument('-w',
'--weights',
type=str,
help='weights for finetuning or testing')
parser.add_argument('--fleet',
action='store_true',
help='whether to use fleet run distributed training')
parser.add_argument('--amp',
action='store_true',
help='whether to open amp training.')
parser.add_argument(
'--amp_level',
type=str,
default=None,
help="optimize level when open amp training, can only be 'O1' or 'O2'.")
parser.add_argument(
'--validate',
action='store_true',
help='whether to evaluate the checkpoint during training')
parser.add_argument(
'--seed',
type=int,
default=1234,
help='fixed all random seeds when the program is running')
parser.add_argument(
'--max_iters',
type=int,
default=None,
help='max iterations when training(this arg only used in test_tipc)')
parser.add_argument(
'-p',
'--profiler_options',
type=str,
default=None,
help='The option of profiler, which should be in format '
'\"key1=value1;key2=value2;key3=value3\".')
args = parser.parse_args()
return args
def main():
args = parse_args()
cfg = get_config(args.config, overrides=args.override)
# enable to use npu if paddle is built with npu
if paddle.device.is_compiled_with_npu(
) or "npu" in paddle.device.get_all_custom_device_type():
cfg.__setattr__("use_npu", True)
elif paddle.device.is_compiled_with_xpu():
cfg.__setattr__("use_xpu", True)
# set seed if specified
seed = args.seed
if seed is not None:
assert isinstance(
seed, int), f"seed must be a integer when specified, but got {seed}"
random.seed(seed)
np.random.seed(seed)
paddle.seed(seed)
# set amp_level if amp is enabled
if args.amp:
if args.amp_level is None:
args.amp_level = 'O1' # set defaualt amp_level to 'O1'
else:
assert args.amp_level in [
'O1', 'O2'
], f"amp_level must be 'O1' or 'O2' when amp enabled, but got {args.amp_level}."
_, world_size = get_dist_info()
parallel = world_size != 1
if parallel:
paddle.distributed.init_parallel_env()
if args.test:
test_model(cfg, weights=args.weights, parallel=parallel)
elif args.train_dali:
train_dali(cfg, weights=args.weights, parallel=parallel)
elif args.multigrid:
train_model_multigrid(cfg,
world_size=world_size,
validate=args.validate)
else:
train_model(cfg,
weights=args.weights,
parallel=parallel,
validate=args.validate,
use_fleet=args.fleet,
use_amp=args.amp,
amp_level=args.amp_level,
max_iters=args.max_iters,
profiler_options=args.profiler_options)
if __name__ == '__main__':
main()