-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLab_forreal.m
326 lines (261 loc) · 7.74 KB
/
Lab_forreal.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
%% lab
clear all
clc
%%
load('ICE_lab_full')
load('week2')
load('week_2_data')
%% Calibration EQ week1 and week2
mom_arm = 0.127;
Weight = calib_equation_weight ./ 100;
Torque = Weight .* mom_arm;
volt_w3 = calib_eq(2:end,1);
Weights = Weights .* 2.262;
Torque2 = Weights .* mom_arm;
[x,y] = polyfit(calib_equation_volt,Torque,1)
[x2,y2] = polyfit(volt_w2,Torque2,1)
[x25,y25] = polyfit(volt_w3,Torque2,1)
figure(1)
hold on
grid on
plot(calib_equation_volt,Torque,'b.')
plot(calib_equation_volt,x(1).*calib_equation_volt + x(2),'r')
xlabel('Voltage (V)')
ylabel('Torque (N-m)')
legend('data','T = 3.721x + 0.976')
title('Week 1 Calibration')
hold off
figure(2)
hold on
grid on
plot(volt_w2,Torque2,'b.')
plot(volt_w2,x2(1).*volt_w2 + x2(2),'r')
xlabel('Voltage (V)')
ylabel('Torque (N-m)')
legend('data','T = 7.8485x + .1205')
title('Week 2 Calibration')
hold off
figure(11)
hold on
grid on
plot(volt_w3,Torque2,'b.')
plot(volt_w3,x25(1).*volt_w3 + x25(2),'r')
xlabel('Voltage (V)')
ylabel('Torque (N-m)')
legend('data','T = 0.9043x + 0.6854')
title('Week 2 Supplemental Calibration')
hold off
%% Week 1
%plotting fig1a angular position vs time
figure(3)
hold on
grid on
plot(time1,encoder_angle1,'b')
xlabel('Time [s]')
ylabel('Angular Position [rad]')
legend('Angular Position')
hold off
ind1 = ~isnan(index1);
index1 = index1(ind1);
increment1 = increment1(ind1);
%initialize variables
time_index1 = [];
encoder_angle_index1 = [];
inc1 = [];
%segment 10 degree sections based on the increments/indexs given
for n = 1:length(increment1)-1
t = time1(index1(n));
ea = encoder_angle1(index1(n),1);
e = increment1(n,1).* 10 .*(pi./180);
%add to vectors
time_index1 = [time_index1; t];
encoder_angle_index1 = [encoder_angle_index1; ea];
inc1 = [inc1;e];
end
ind2 = ~isnan(index2);
index2 = index2(ind2);
increment2 = increment2(ind2);
%initialize variables
time_index2 = [];
encoder_angle_index2 = [];
inc2 = [];
%segment 10 degree sections based on the increments/indexs given
for n = 1:length(increment2)-1
t = time2(index2(n));
ea = encoder_angle2(index2(n),1);
e = increment2(n,1).* 10 .*(pi./180);
%add to vectors
time_index2 = [time_index2; t];
encoder_angle_index2 = [encoder_angle_index2; ea];
inc2 = [inc2;e];
end
ind3 = ~isnan(index3);
index3 = index3(ind3);
increment3 = increment3(ind3);
%initialize variables
time_index3 = [];
encoder_angle_index3 = [];
inc3 = [];
%segment 10 degree sections based on the increments/indexs given
for n = 1:length(increment3)-1
t = time3(index3(n));
ea = encoder_angle3(index3(n),1);
e = increment3(n,1).* 10 .*(pi./180);
%add to vectors
time_index3 = [time_index3; t];
encoder_angle_index3 = [encoder_angle_index3; ea];
inc3 = [inc3;e];
end
ind4 = ~isnan(index4);
index4 = index4(ind4);
increment4 = increment4(ind4);
%initialize variables
time_index4 = [];
encoder_angle_index4 = [];
inc4 = [];
%segment 10 degree sections based on the increments/indexs given
for n = 1:length(increment4)-1
t = time4(index4(n));
ea = encoder_angle4(index4(n),1);
e = increment4(n,1).* 10 .*(pi./180);
%add to vectors
time_index4 = [time_index4; t];
encoder_angle_index4 = [encoder_angle_index4; ea];
inc4 = [inc4;e];
end
%plotting fig1bc incremented angle & angle vs time
figure(4)
hold on
grid on
plot(time_index1,inc1,'c-o')
plot(time_index1,encoder_angle_index1,'b-o')
xlabel('Time [s]')
ylabel('Angular Position [rad]')
legend('Incremented Angle','Angle')
xlim([.4 1]);
hold off
%% torque v time
T1 = x(1) .* -ft_volt1 + x(2);
T2 = x(1) .* -ft_volt2 + x(2);
T3 = x(1) .* -ft_volt3 + x(2);
T4 = x(1) .* -ft_volt4 + x(2);
%plotting fig2a motor torque
figure(5)
plot(time1,T1,'k-')
xlabel('Time [s]')
ylabel('Motor Torque [N*m]')
legend('Motor Torque')
avg1 = mean(T1(1:1:index1(1),1)); %initialize variable and take first 0.4 seconds out
%avg torque vals between 10 deg indicies
for n = 2:length(increment1)-1
a = mean(T1(index1(n-1)+1:1:index1(n),1));
avg1 = [avg1; a];
end
avg2 = mean(T2(1:1:index2(1),1)); %initialize variable and take first 0.4 seconds out
%avg torque vals between 10 deg indicies
for n = 2:length(increment2)-1
a = mean(T2(index2(n-1)+1:1:index2(n),1));
avg2 = [avg2; a];
end
avg3 = mean(T3(1:1:index3(1),1)); %initialize variable and take first 0.4 seconds out
%avg torque vals between 10 deg indicies
for n = 2:length(increment3)-1
a = mean(T3(index3(n-1)+1:1:index3(n),1));
avg3 = [avg3; a];
end
avg4 = mean(T4(1:1:index4(1),1)); %initialize variable and take first 0.4 seconds out
%avg torque vals between 10 deg indicies
for n = 2:length(increment4)-1
a = mean(T4(index4(n-1)+1:1:index4(n),1));
avg4 = [avg4; a];
end
%plot fig 2b
figure(6)
plot(time_index1,avg1,'b.-')
xlabel('Time [s]')
ylabel('Motor Torque [N*m]')
legend('Averaged Torque over 10 degree intervals')
%plot fig 31
figure(7)
hold on
grid on
plot(inc1,avg1,'b.-')
plot([163 163],[0 5],'r')
xlabel('Angular Position [rad]')
ylabel('Motor Torque [N*m]')
legend('Averaged Torque','Begining of steady state')
title('Low RPM Flywheel')
mask = inc1 > 163;
inc1c = inc1(mask);
avg1c = avg1(mask);
favg1 = min(avg1c) + ((max(avg1c) - min(avg1c))./2);
%plot fig 32
figure(8)
hold on
grid on
plot(inc2,avg2,'b.-')
plot([60 60],[1.5 5],'r')
xlabel('Angular Position [rad]')
ylabel('Motor Torque [N*m]')
legend('Averaged Torque','Begining of steady state')
title('Medium RPM Flywheel')
mask = inc2 > 60;
inc2c = inc2(mask);
avg2c = avg2(mask);
favg2 = min(avg2c) + ((max(avg2c) - min(avg2c))./2);
%plot fig 33
figure(9)
hold on
grid on
plot(inc3,avg3,'b.-')
plot([196 196],[1 9],'r')
xlabel('Angular Position [rad]')
ylabel('Motor Torque [N*m]')
legend('Averaged Torque','Begining of steady state')
title('High RPM Flywheel')
mask = inc3 > 196;
inc3c = inc3(mask);
avg3c = avg3(mask);
favg3 = min(avg3c) + ((max(avg3c) - min(avg3c))./2);
%plot fig 34
figure(10)
hold on
grid on
plot(inc4,avg4,'b.-')
plot([191 191],[1 6],'r')
xlabel('Angular Position [rad]')
ylabel('Motor Torque [N*m]')
legend('Averaged Torque','Begining of steady state')
title('High RPM One Flywheel')
mask = inc4 > 191;
inc4c = inc4(mask);
avg4c = avg4(mask);
favg4 = min(avg4c) + ((max(avg4c) - min(avg4c))./2);
Wm1 = sum(avg1 .* 10 .* pi ./ 180)%numerical integration equation
Wm2 = sum(avg2 .* 10 .* pi ./ 180)%numerical integration equation
Wm3 = sum(avg3 .* 10 .* pi ./ 180)%numerical integration equation
Wm4 = sum(avg4 .* 10 .* pi ./ 180)%numerical integration equation
Wm1_c = sum(avg1c .* 10 .* pi ./ 180)%W friction
Wm2_c = sum(avg2c .* 10 .* pi ./ 180)%W friction
Wm3_c = sum(avg3c .* 10 .* pi ./ 180)%W friction
Wm4_c = sum(avg4c .* 10 .* pi ./ 180)%W friction
% W1_p = sum((avg1c - min(avg1c)) .* 10 .* pi ./ 180)%W piston
% W2_p = sum((avg2c - min(avg2c)) .* 10 .* pi ./ 180)%W piston
% W3_p = sum((avg3c - min(avg3c)) .* 10 .* pi ./ 180)%W piston
% W4_p = sum((avg4c - min(avg4c)) .* 10 .* pi ./ 180)%W piston
inc1(end)
Tfric = mean([favg1 , favg2 , favg3])
Wfric1 = (Tfric .* 10 .*pi ./180).* inc1(end)
Wfric2 = (Tfric .* 10 .*pi ./180).* inc2(end)
Wfric3 = (Tfric .* 10 .*pi ./180).* inc3(end)
Wfric4 = (favg4 .* 10 .*pi ./180).* inc4(end)
Wmavg = mean([Wm1,Wm2,Wm3]);
Wfricavg = mean([Wfric1,Wfric2,Wfric3]);
wfly1 = inc1(end)./3
wfly2 = inc2(end)./3
wfly3 = inc3(end)./3
wfly4 = inc4(end)./3
wflyavg = mean([wfly1,wfly2,wfly3])
Iflywith = 2.*(Wmavg+Wfricavg)./(wflyavg.^2)
Iflyno = 2.*(Wm4+Wfric4)./(wfly4.^2)
I_fly = (Iflywith - Iflyno).*(4/3)