-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdynamic_connectivity.py
585 lines (491 loc) · 21 KB
/
dynamic_connectivity.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
# [ Reference ]
# Publication : Randomized Fully Dynamic Graph Algorithms with Polylogarithmic Time per Operation
# - Henzinger & King
# Streamlined : Dynamic Graphs II
# - Demaine (MIT 6.851 Advanced Data Structures)
class AVLTree():
total_nodes = 0
def __init__(self, value, left=None, right=None):
self.value = value
self.id = AVLTree.total_nodes
AVLTree.total_nodes += 1
self._left = self._right = self._parent = None
self._height = 1
self._size = 1
self._annotation = False
self._subtree_annotation = False
self._link_left(left)
self._link_right(right)
@staticmethod
def height(tree):
return 0 if tree is None else tree._height
@staticmethod
def size(tree):
return 0 if tree is None else tree._size
@staticmethod
def subtree_annotation(tree):
return False if tree is None else tree._subtree_annotation
def _update_subtree_annotation(self):
self._subtree_annotation = self._annotation or\
any(map(AVLTree.subtree_annotation, [self._left, self._right]))
return self
def set_annotation(self, flag):
if self._annotation == flag: return
self._annotation = flag
cur_node = self
while cur_node is not None:
cur_node._update_subtree_annotation()
cur_node = cur_node._parent
def annotated_nodes(self, result=None):
if result is None: result = []
if AVLTree.subtree_annotation(self._left): self._left.annotated_nodes(result)
if self._annotation: result.append(self)
if AVLTree.subtree_annotation(self._right): self._right.annotated_nodes(result)
return result
def _update_stats(self):
self._height = 1 + max(map(AVLTree.height, [self._left, self._right]))
self._size = 1 + sum(map(AVLTree.size, [self._left, self._right]))
return self._update_subtree_annotation()
@staticmethod
def balance_factor(tree):
if tree is None: return 0
return AVLTree.height(tree._left) - AVLTree.height(tree._right)
def _link_left(self, new_left):
if self._left != new_left:
AVLTree._cut_parent(self._left)
AVLTree._cut_parent(new_left)
self._left = new_left
if new_left is not None: new_left._parent = self
self._update_stats()
return self
def _link_right(self, new_right):
if self._right != new_right:
AVLTree._cut_parent(self._right)
AVLTree._cut_parent(new_right)
self._right = new_right
if new_right is not None: new_right._parent = self
self._update_stats()
return self
@staticmethod
def _cut_parent(node):
if node is not None and node._parent is not None:
if node._parent._left == node:
node._parent._left = None
node._parent._update_stats()
if node._parent._right == node:
node._parent._right = None
node._parent._update_stats()
node._parent = None
return node
def _rotateR(self):
child = self._left
self._link_left(child._right)
child._link_right(self)
self._update_stats()
child._update_stats()
return child
def _rotateL(self):
child = self._right
self._link_right(child._left)
child._link_left(self)
self._update_stats()
child._update_stats()
return child
@staticmethod
def _merge_left(left, mid, right):
if AVLTree.height(left) > AVLTree.height(right) + 1:
left._link_right(AVLTree._merge_left(left._right, mid, right))
if AVLTree.balance_factor(left) < -1:
if AVLTree.balance_factor(left._right) < 0: return left._rotateL()
return left._link_right(left._right._rotateR())._rotateL()
return left
return mid._link_left(left)._link_right(right)
@staticmethod
def _merge_right(left, mid, right):
if AVLTree.height(right) > AVLTree.height(left) + 1:
right._link_left(AVLTree._merge_right(left, mid, right._left))
if AVLTree.balance_factor(right) > 1:
if AVLTree.balance_factor(right._left) > 0: return right._rotateR()
return right._link_left(right._left._rotateL())._rotateR()
return right
return mid._link_left(left)._link_right(right)
@staticmethod
def merge(left, mid, right):
mid._link_left(None)._link_right(None)
if AVLTree.height(left) > AVLTree.height(right) + 1:
return AVLTree._cut_parent(AVLTree._merge_left(left, mid, right))
if AVLTree.height(right) > AVLTree.height(left) + 1:
return AVLTree._cut_parent(AVLTree._merge_right(left, mid, right))
return mid._link_left(left)._link_right(right)
@staticmethod
def push_front(node, tree):
return AVLTree.merge(None, node, tree)
@staticmethod
def push_back(tree, node):
return AVLTree.merge(tree, node, None)
@staticmethod
def split(mid):
if mid is None: return None, None, None
cur_mid, ancestor_splits = mid, []
while cur_mid._parent is not None:
cur_mid, cut_left = cur_mid._parent, (cur_mid != cur_mid._parent._left)
ancestor_splits.append((cur_mid, cut_left))
[node, left, right] = map(AVLTree._cut_parent, [mid, mid._left, mid._right])
for (cur_mid, cut_left) in ancestor_splits:
AVLTree._cut_parent(cur_mid)
if cut_left: left = AVLTree.merge(AVLTree._cut_parent(cur_mid._left), cur_mid, left)
else: right = AVLTree.merge(right, cur_mid, AVLTree._cut_parent(cur_mid._right))
return left, node, right
@staticmethod
def pop_front(tree):
assert tree is not None
leftmost = tree
while leftmost._left is not None: leftmost = leftmost._left
return AVLTree.split(leftmost)[1:]
@staticmethod
def pop_back(tree):
assert tree is not None
rightmost = tree
while rightmost._right is not None: rightmost = rightmost._right
return AVLTree.split(rightmost)[:2]
@staticmethod
def get(tree, index):
if tree is None or index < 0: return None
lsize = AVLTree.size(tree._left)
if lsize > index: return AVLTree.get(tree._left, index)
if lsize == index: return tree
return AVLTree.get(tree._right, index - (1+lsize))
@staticmethod
def inorder(tree, traversal=None):
if traversal is None: traversal = []
if tree is not None:
AVLTree.inorder(tree._left, traversal)
traversal.append(tree.value)
AVLTree.inorder(tree._right, traversal)
return traversal
@staticmethod
def render(node, offset=None):
if offset is None: offset = ''
if node is None:
print(offset, 'Empty')
return
print(offset, 'node id', node.id)
print(offset, 'node value', node.value)
print(offset, 'node annotation', node._annotation)
print(offset, 'tree annotation', node._subtree_annotation)
print(offset, 'tree height', node._height)
print(offset, 'tree size', node._size)
print(offset, 'tree balance', AVLTree.balance_factor(node))
if node._parent is not None:
print(offset, 'parent id', node._parent.id)
if node._left is not None:
print(offset, 'left subtree')
AVLTree.render(node._left, offset + ' ')
if node._right is not None:
print(offset, 'right subtree')
AVLTree.render(node._right, offset + ' ')
def run_avl_tree_tests():
from random import choice, randrange
def validate_structure(tree):
if tree is None: return
validate_structure(tree._left)
validate_structure(tree._right)
assert tree._subtree_annotation == tree._annotation or\
any(map(AVLTree.subtree_annotation, [tree._left, tree._right]))
assert tree._height == 1 + max(map(AVLTree.height, [tree._left, tree._right]))
assert tree._size == 1 + sum(map(AVLTree.size, [tree._left, tree._right]))
assert tree._parent is None or tree._parent._left == tree or tree._parent._right == tree
assert AVLTree.balance_factor(tree) in [-1,0,1]
l = 1<<10
tree = None
for j in range(l):
tree = AVLTree.push_back(tree, AVLTree(j))
validate_structure(tree)
assert AVLTree.inorder(tree) == list(range(l))
values = []
while tree is not None:
tree, node = AVLTree.pop_back(tree)
validate_structure(tree)
values.append(node.value)
assert values == list(range(l-1, -1, -1))
tree = None
for j in range(l-1, -1, -1): tree = AVLTree.push_front(AVLTree(j), tree)
validate_structure(tree)
assert AVLTree.inorder(tree) == list(range(l))
values = []
while tree is not None:
node, tree = AVLTree.pop_front(tree)
validate_structure(tree)
values.append(node.value)
assert values == list(range(l))
tree_list = list(map(lambda v: AVLTree(v), range(l)))
for tree in tree_list[::1<<4]: tree.set_annotation(True)
while len(tree_list) > 1:
m = randrange(len(tree_list)-1)
tree = AVLTree.merge(tree_list[m], AVLTree(-1), tree_list[m+1])
validate_structure(tree)
tree_list = tree_list[:m] + [tree] + tree_list[m+2:]
assert list(filter(lambda x: x >= 0, AVLTree.inorder(tree))) == list(range(l))
assert list(map(lambda x: x.value, tree.annotated_nodes())) == list(range(0, l, 1<<4))
for node in tree.annotated_nodes(): node.set_annotation(False)
assert list(map(lambda x: x.value, tree.annotated_nodes())) == []
while True:
try: i = \
choice(list(map(lambda p: p[0], filter(lambda p: p[1].value == -1, enumerate(tree_list)))))
except: break
left, _, right = AVLTree.split(tree_list[i])
validate_structure(left)
validate_structure(right)
tree_list = tree_list[:i] + [left, right] + tree_list[i+1:]
assert list(map(lambda t: t.value, tree_list)) == list(range(l))
print('AVL Tree tests finished!')
class EulerTourForest():
def __init__(self):
self._edge_map = dict()
def _insert_node(self, v):
if (v, v) not in self._edge_map:
self._edge_map[v, v] = AVLTree((v, v))
def _get_avl_root(self, u, v):
if (u, v) not in self._edge_map: return None
current_node = self._edge_map[u, v]
while current_node._parent is not None: current_node = current_node._parent
return current_node
def _get_root(self, u, v):
if (u, v) not in self._edge_map: return None
current_node = self._get_avl_root(u, v)
while current_node._left is not None: current_node = current_node._left
return current_node
def set_annotation(self, u, flag):
self._insert_node(u)
self._edge_map[u, u].set_annotation(flag)
def annotated_nodes(self, u):
self._insert_node(u)
return list(map(lambda n: n.value[0], self._get_avl_root(u, u).annotated_nodes()))
def size(self, u):
self._insert_node(u)
avl_size = AVLTree.size(self._get_avl_root(u, u))
return (avl_size + 1) >> 1
def get_root(self, u):
return None if self._get_root(u, u) is None else self._get_root(u, u).value[0]
def linked(self, u, v):
return (u, v) in self._edge_map
def connected(self, u, v):
self._insert_node(u)
self._insert_node(v)
return self._get_root(u, u) is not None and self._get_root(u, u) == self._get_root(v, v)
def make_root(self, v):
self._insert_node(v)
if self._get_root(v, v).value == (v, v): return
root_node, _ = AVLTree.pop_front(self._get_avl_root(v, v))
left, new_root_node, right = AVLTree.split(self._edge_map[v, v])
AVLTree.push_front(new_root_node, AVLTree.merge(right, root_node, left))
def link(self, u, v):
self._insert_node(u)
self._insert_node(v)
if (u, v) in self._edge_map: return
assert not self.connected(u, v)
self.make_root(u)
self.make_root(v)
self._edge_map[u, v] = AVLTree((u, v))
self._edge_map[v, u] = AVLTree((v, u))
AVLTree.push_back(\
AVLTree.merge(\
self._get_avl_root(u, u), self._edge_map[u, v], self._get_avl_root(v, v)),\
self._get_avl_root(v, u))
def cut(self, u, v):
self._insert_node(u)
self._insert_node(v)
if (u, v) not in self._edge_map: return
assert u != v
self.make_root(u)
left, down_link, _ = AVLTree.split(self._edge_map[u, v])
_, up_link, right = AVLTree.split(self._edge_map[v, u])
left, mid = AVLTree.pop_back(left)
AVLTree.merge(left, mid, right)
del self._edge_map[down_link.value]
del self._edge_map[up_link.value]
def repr(self):
result = []
visited = set()
for node in self._edge_map.values():
if node.value in visited: continue
result.append(AVLTree.inorder(self._get_avl_root(*node.value)))
visited = visited.union(result[-1])
return result
def render(self):
for tour in self.repr():
print(tour)
def run_euler_tour_forest_tests():
from random import choice, randrange
def validate_structure(euler_tour_forest, forest):
tours = euler_tour_forest.repr()
for tour in tours:
for i in range(-1, len(tour)-1):
assert tour[i][1] == tour[i+1][0]
edges = set()
for i in forest:
edges.add((i,i)); edges.add((forest[i],forest[i]))
edges.add((i,forest[i])); edges.add((forest[i],i))
for tour in tours:
for edge in tour:
assert edge in edges
edges.remove(edge)
assert len(edges) == 0
l = 1<<10
euler_tour_forest, forest = EulerTourForest(), dict()
for i in range(l):
p = randrange(i+1)
forest[i] = p
euler_tour_forest.link(i, p)
validate_structure(euler_tour_forest, forest)
longest_tree_tour = max(map(lambda l: (len(l), l), euler_tour_forest.repr()))[1]
tree_nodes = list(set(map(lambda e: e[0], longest_tree_tour)))
for node in tree_nodes: euler_tour_forest.set_annotation(node, True)
assert sorted(euler_tour_forest.annotated_nodes(tree_nodes[0])) == sorted(tree_nodes)
for node in tree_nodes[::2]: euler_tour_forest.set_annotation(node, False)
assert sorted(euler_tour_forest.annotated_nodes(tree_nodes[0])) == sorted(tree_nodes[1::2])
for node in tree_nodes: euler_tour_forest.set_annotation(node, False)
assert sorted(euler_tour_forest.annotated_nodes(tree_nodes[0])) == []
get_root = lambda u: u if u == forest[u] else get_root(forest[u])
for i in range(l):
euler_tour_forest.make_root(i)
assert euler_tour_forest.get_root(i) == i
for j in range(l):
assert euler_tour_forest.connected(i, j) == (get_root(i) == get_root(j))
while True:
try: i = choice(filter(lambda i: i != forest[i], list(forest.keys())))
except: break
euler_tour_forest.cut(i, forest[i])
forest[i] = i
validate_structure(euler_tour_forest, forest)
print('Euler Tour Forest tests finished!')
class LevelStructure():
def __init__(self):
from collections import defaultdict
self._euler_tour_forests = defaultdict(lambda: EulerTourForest())
self._spanning_edges = defaultdict(lambda: defaultdict(lambda: set()))
self._auxiliary_edges = defaultdict(lambda: defaultdict(lambda: set()))
self._edge_level = dict()
def connected(self, i, j):
return self._euler_tour_forests[0].connected(i, j)
def _linked(self, i, j):
return (i, j) in self._edge_level
def _is_auxiliary_edge(self, i, j):
return j in self._auxiliary_edges[self._edge_level[i, j]][i]
def _update_link_metadata(self, l, i, j):
self._euler_tour_forests[l].set_annotation(i, True)
self._euler_tour_forests[l].set_annotation(j, True)
self._edge_level[i, j] = self._edge_level[j, i] = l
def _link_auxiliary_edge(self, l, i, j):
self._update_link_metadata(l, i, j)
self._auxiliary_edges[l][i].add(j)
self._auxiliary_edges[l][j].add(i)
def _link_spanning_edge(self, l, i, j):
self._update_link_metadata(l, i, j)
self._spanning_edges[l][i].add(j)
self._spanning_edges[l][j].add(i)
def _update_cut_metadata(self, l, i, j):
if (not len(self._spanning_edges[l][i])) and (not len(self._auxiliary_edges[l][i])):
self._euler_tour_forests[l].set_annotation(i, False)
if (not len(self._spanning_edges[l][j])) and (not len(self._auxiliary_edges[l][j])):
self._euler_tour_forests[l].set_annotation(j, False)
del self._edge_level[i, j]
del self._edge_level[j, i]
def _cut_auxiliary_edge(self, i, j):
l = self._edge_level[i, j]
self._auxiliary_edges[l][i].remove(j)
self._auxiliary_edges[l][j].remove(i)
self._update_cut_metadata(l, i, j)
def _cut_spanning_edge(self, i, j):
l = self._edge_level[i, j]
self._spanning_edges[l][i].remove(j)
self._spanning_edges[l][j].remove(i)
self._update_cut_metadata(l, i, j)
def link(self, i, j):
if (i, j) in self._edge_level: return self
if self._euler_tour_forests[0].connected(i, j): self._link_auxiliary_edge(0, i, j)
else:
self._link_spanning_edge(0, i, j)
self._euler_tour_forests[0].link(i, j)
return self
def cut(self, i, j):
if (i, j) not in self._edge_level: return self
if self._is_auxiliary_edge(i, j): self._cut_auxiliary_edge(i, j)
else:
level = self._edge_level[i, j]
self._cut_spanning_edge(i, j)
for l in range(level, -1, -1): self._euler_tour_forests[l].cut(i, j)
for l in range(level, -1, -1):
forest = self._euler_tour_forests[l]
(x, y) = (i, j) if forest.size(i) < forest.size(j) else (j, i)
for u in forest.annotated_nodes(x):
for v in list(self._spanning_edges[l][u]):
self._cut_spanning_edge(u, v)
self._link_spanning_edge(1+l, u, v)
self._euler_tour_forests[1+l].link(u, v)
for u in forest.annotated_nodes(x):
for v in list(self._auxiliary_edges[l][u]):
self._cut_auxiliary_edge(u, v)
if forest.connected(v, y):
self._link_spanning_edge(l, u, v)
for f in range(1+l): self._euler_tour_forests[f].link(u, v)
return self
self._link_auxiliary_edge(1+l, u, v)
return self
def render(self):
print('edge levels')
print(self._edge_level)
for l in self._euler_tour_forests:
print('level', l)
print('euler tour forest')
self._euler_tour_forests[l].render()
print('spanning edges')
print(dict(self._spanning_edges[l]))
print('auxiliary edges')
print(dict(self._auxiliary_edges[l]))
print()
def run_level_structure_tests():
from random import randrange
n = 1<<5
level_structure = LevelStructure()
graph = [set() for _ in range(n)]
def connected(u, v, visited=None):
if visited is None: visited = set()
if u == v: return True
visited.add(u)
for i in graph[u]:
if i in visited: continue
if connected(i, v, visited): return True
return False
def validate():
for u in range(n):
for v in range(u):
assert level_structure.connected(u, v) == connected(u, v)
unlinked_edges = [(i, j) for i in range(n) for j in range(i)]
linked_edges = []
def link_and_validate():
e = unlinked_edges.pop(randrange(len(unlinked_edges)))
linked_edges.append(e)
level_structure.link(*e)
graph[e[0]].add(e[1])
graph[e[1]].add(e[0])
validate()
def cut_and_validate():
e = linked_edges.pop(randrange(len(linked_edges)))
unlinked_edges.append(e)
level_structure.cut(*e)
graph[e[0]].remove(e[1])
graph[e[1]].remove(e[0])
validate()
ne = len(unlinked_edges)
while len(unlinked_edges) > (ne>>1): link_and_validate()
while len(linked_edges) > (ne>>2): cut_and_validate()
while len(unlinked_edges) > (ne>>2): link_and_validate()
while len(linked_edges) > (ne>>1): cut_and_validate()
while len(unlinked_edges) > 0: link_and_validate()
while len(linked_edges) > 0: cut_and_validate()
print('Level Structure tests finished!')
if __name__ == "__main__":
run_avl_tree_tests()
run_euler_tour_forest_tests()
run_level_structure_tests()