forked from zyb0408/zyb0408.github.io
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path2018-11-12-panda使用.html
1300 lines (749 loc) · 64.4 KB
/
2018-11-12-panda使用.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html>
<html class="theme-next pisces use-motion" lang="zh-Hans">
<head><meta name="generator" content="Hexo 3.8.0">
<meta charset="UTF-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1">
<meta name="theme-color" content="#222">
<meta http-equiv="Cache-Control" content="no-transform">
<meta http-equiv="Cache-Control" content="no-siteapp">
<link href="/lib/fancybox/source/jquery.fancybox.css?v=2.1.5" rel="stylesheet" type="text/css">
<link href="/lib/font-awesome/css/font-awesome.min.css?v=4.6.2" rel="stylesheet" type="text/css">
<link href="/css/main.css?v=5.1.4" rel="stylesheet" type="text/css">
<link rel="icon" type="image/png" sizes="32x32" href="/images/favicon-32x32-next.png?v=5.1.4">
<meta name="keywords" content="Computer Siencise, OpenCV, TensorFlow">
<meta name="description" content="数据结构之Series123456789101112131415161718192021222324252627282930313233343536373839404142import pandas as pdfrom import Series,DataFrame Series是类似于一维数组的对象,由一组数据以及索引组成#Series 1-给定了索引a= Series([4,7,-5,3],i">
<meta name="keywords" content="TensorFlow OpenCV">
<meta property="og:type" content="article">
<meta property="og:title" content="panda使用">
<meta property="og:url" content="https://zyb0408.github.io/2018-11-12-panda使用.html">
<meta property="og:site_name" content="小蜜蜂">
<meta property="og:description" content="数据结构之Series123456789101112131415161718192021222324252627282930313233343536373839404142import pandas as pdfrom import Series,DataFrame Series是类似于一维数组的对象,由一组数据以及索引组成#Series 1-给定了索引a= Series([4,7,-5,3],i">
<meta property="og:locale" content="zh-Hans">
<meta property="og:updated_time" content="2018-11-12T11:37:57.000Z">
<meta name="twitter:card" content="summary">
<meta name="twitter:title" content="panda使用">
<meta name="twitter:description" content="数据结构之Series123456789101112131415161718192021222324252627282930313233343536373839404142import pandas as pdfrom import Series,DataFrame Series是类似于一维数组的对象,由一组数据以及索引组成#Series 1-给定了索引a= Series([4,7,-5,3],i">
<script type="text/javascript" id="hexo.configurations">
var NexT = window.NexT || {};
var CONFIG = {
root: '/',
scheme: 'Pisces',
version: '5.1.4',
sidebar: {"position":"left","display":"post","offset":12,"b2t":false,"scrollpercent":true,"onmobile":false},
fancybox: true,
tabs: true,
motion: {"enable":true,"async":false,"transition":{"post_block":"fadeIn","post_header":"slideDownIn","post_body":"slideDownIn","coll_header":"slideLeftIn","sidebar":"slideUpIn"}},
duoshuo: {
userId: '0',
author: '博主'
},
algolia: {
applicationID: '',
apiKey: '',
indexName: '',
hits: {"per_page":10},
labels: {"input_placeholder":"Search for Posts","hits_empty":"We didn't find any results for the search: ${query}","hits_stats":"${hits} results found in ${time} ms"}
}
};
</script>
<link rel="canonical" href="https://zyb0408.github.io/2018-11-12-panda使用.html">
<title>panda使用 | 小蜜蜂</title>
</head>
<body itemscope="" itemtype="http://schema.org/WebPage" lang="zh-Hans">
<div class="container sidebar-position-left page-post-detail">
<div class="headband"></div>
<header id="header" class="header" itemscope="" itemtype="http://schema.org/WPHeader">
<div class="header-inner"><div class="site-brand-wrapper">
<div class="site-meta custom-logo">
<div class="custom-logo-site-title">
<a href="/" class="brand" rel="start">
<span class="logo-line-before"><i></i></span>
<span class="site-title">小蜜蜂</span>
<span class="logo-line-after"><i></i></span>
</a>
</div>
<p class="site-subtitle">Don't Hack Me</p>
</div>
<div class="site-nav-toggle">
<button>
<span class="btn-bar"></span>
<span class="btn-bar"></span>
<span class="btn-bar"></span>
</button>
</div>
</div>
<nav class="site-nav">
<ul id="menu" class="menu">
<li class="menu-item menu-item-home">
<a href="/" rel="section">
<i class="menu-item-icon fa fa-fw fa-home"></i> <br>
首页
</a>
</li>
<li class="menu-item menu-item-about">
<a href="/about/" rel="section">
<i class="menu-item-icon fa fa-fw fa-user"></i> <br>
关于
</a>
</li>
<li class="menu-item menu-item-tags">
<a href="/tags/" rel="section">
<i class="menu-item-icon fa fa-fw fa-tags"></i> <br>
标签
</a>
</li>
<li class="menu-item menu-item-categories">
<a href="/categories/" rel="section">
<i class="menu-item-icon fa fa-fw fa-th"></i> <br>
分类
</a>
</li>
<li class="menu-item menu-item-archives">
<a href="/archives/" rel="section">
<i class="menu-item-icon fa fa-fw fa-archive"></i> <br>
归档
</a>
</li>
<li class="menu-item menu-item-search">
<a href="javascript:;" class="popup-trigger">
<i class="menu-item-icon fa fa-search fa-fw"></i> <br>
搜索
</a>
</li>
</ul>
<div class="site-search">
<div class="popup search-popup local-search-popup">
<div class="local-search-header clearfix">
<span class="search-icon">
<i class="fa fa-search"></i>
</span>
<span class="popup-btn-close">
<i class="fa fa-times-circle"></i>
</span>
<div class="local-search-input-wrapper">
<input autocomplete="off" placeholder="搜索..." spellcheck="false" type="text" id="local-search-input">
</div>
</div>
<div id="local-search-result"></div>
</div>
</div>
</nav>
</div>
</header>
<main id="main" class="main">
<div class="main-inner">
<div class="content-wrap">
<div id="content" class="content">
<div id="posts" class="posts-expand">
<article class="post post-type-normal" itemscope="" itemtype="http://schema.org/Article">
<div class="post-block">
<link itemprop="mainEntityOfPage" href="https://zyb0408.github.io/2018-11-12-panda使用.html">
<span hidden itemprop="author" itemscope="" itemtype="http://schema.org/Person">
<meta itemprop="name" content="小蜜蜂">
<meta itemprop="description" content="">
<meta itemprop="image" content="/images/favicon-32x32-next.png">
</span>
<span hidden itemprop="publisher" itemscope="" itemtype="http://schema.org/Organization">
<meta itemprop="name" content="小蜜蜂">
</span>
<header class="post-header">
<h1 class="post-title" itemprop="name headline">panda使用</h1>
<div class="post-meta">
<span class="post-time">
<span class="post-meta-item-icon">
<i class="fa fa-calendar-o"></i>
</span>
<span class="post-meta-item-text">发表于</span>
<time title="创建于" itemprop="dateCreated datePublished" datetime="2018-11-12T19:37:57+08:00">
2018-11-12
</time>
<span class="post-meta-divider">|</span>
<span class="post-meta-item-icon">
<i class="fa fa-calendar-check-o"></i>
</span>
<span class="post-meta-item-text">更新于:</span>
<time title="更新于" itemprop="dateModified" datetime="2018-11-12T19:37:57+08:00">
2018-11-12
</time>
</span>
<span class="post-category">
<span class="post-meta-divider">|</span>
<span class="post-meta-item-icon">
<i class="fa fa-folder-o"></i>
</span>
<span class="post-meta-item-text">分类于</span>
<span itemprop="about" itemscope="" itemtype="http://schema.org/Thing">
<a href="/categories/Python/" itemprop="url" rel="index">
<span itemprop="name">Python</span>
</a>
</span>
</span>
<span class="post-meta-divider">|</span>
<span class="page-pv"><i class="fa fa-file-o"></i>
<span class="busuanzi-value" id="busuanzi_value_page_pv"></span>
</span>
<div class="post-wordcount">
<span class="post-meta-divider">|</span>
<span class="post-meta-item-icon">
<i class="fa fa-file-word-o"></i>
</span>
<span class="post-meta-item-text">字数统计:</span>
<span title="字数统计">
1k
</span>
<span class="post-meta-divider">|</span>
<span class="post-meta-item-icon">
<i class="fa fa-clock-o"></i>
</span>
<span class="post-meta-item-text">阅读时长 ≈</span>
<span title="阅读时长">
4
</span>
</div>
</div>
</header>
<div class="post-body" itemprop="articleBody">
<div>
<div>
<div style="text-align:center;color: #636363;font-size:14px;letter-spacing: 10px">���Ľ�����<i class="fa fa-bell"></i>��л�����Ķ�</div>
</div>
</div>
<h2 id="数据结构之Series"><a href="#数据结构之Series" class="headerlink" title="数据结构之Series"></a>数据结构之Series</h2><figure class="highlight clean"><table><tr><td class="gutter"><pre><span class="line">1</span><br><span class="line">2</span><br><span class="line">3</span><br><span class="line">4</span><br><span class="line">5</span><br><span class="line">6</span><br><span class="line">7</span><br><span class="line">8</span><br><span class="line">9</span><br><span class="line">10</span><br><span class="line">11</span><br><span class="line">12</span><br><span class="line">13</span><br><span class="line">14</span><br><span class="line">15</span><br><span class="line">16</span><br><span class="line">17</span><br><span class="line">18</span><br><span class="line">19</span><br><span class="line">20</span><br><span class="line">21</span><br><span class="line">22</span><br><span class="line">23</span><br><span class="line">24</span><br><span class="line">25</span><br><span class="line">26</span><br><span class="line">27</span><br><span class="line">28</span><br><span class="line">29</span><br><span class="line">30</span><br><span class="line">31</span><br><span class="line">32</span><br><span class="line">33</span><br><span class="line">34</span><br><span class="line">35</span><br><span class="line">36</span><br><span class="line">37</span><br><span class="line">38</span><br><span class="line">39</span><br><span class="line">40</span><br><span class="line">41</span><br><span class="line">42</span><br></pre></td><td class="code"><pre><span class="line"><span class="keyword">import</span> pandas <span class="keyword">as</span> pd</span><br><span class="line"><span class="keyword">from</span> <span class="keyword">import</span> Series,DataFrame </span><br><span class="line">Series是类似于一维数组的对象,由一组数据以及索引组成</span><br><span class="line"></span><br><span class="line">#Series <span class="number">1</span>-给定了索引</span><br><span class="line">a= Series([<span class="number">4</span>,<span class="number">7</span>,<span class="number">-5</span>,<span class="number">3</span>],index=[<span class="string">'d'</span>,<span class="string">'b'</span>,<span class="string">'a'</span>,<span class="string">'c'</span>])</span><br><span class="line">b= pd.Series([<span class="number">4</span>,<span class="number">7</span>,<span class="number">-5</span>,<span class="number">3</span>],index=[<span class="string">'d'</span>,<span class="string">'b'</span>,<span class="string">'a'</span>,<span class="string">'c'</span>])</span><br><span class="line">#<span class="number">2</span>-未给定索引,索引为[<span class="number">0</span>,N<span class="number">-1</span>]</span><br><span class="line">ser1 = Series([<span class="number">1</span>,<span class="number">2</span>,<span class="number">3</span>,<span class="number">4</span>])</span><br><span class="line">#给index指定一个list</span><br><span class="line">ser2 = Series(range(<span class="number">4</span>),index = [<span class="string">"a"</span>,<span class="string">"b"</span>,<span class="string">"c"</span>,<span class="string">"d"</span>])</span><br><span class="line">#<span class="number">3</span>-也可以通过字典来创建Series对象</span><br><span class="line">sdata = {<span class="string">'Ohio'</span>: <span class="number">35000</span>, <span class="string">'Texas'</span>: <span class="number">71000</span>, <span class="string">'Oregon'</span>: <span class="number">16000</span>, <span class="string">'Utah'</span>: <span class="number">5000</span>}</span><br><span class="line">ser3 = Series(sdata)</span><br><span class="line">#可以发现,用字典创建的Series是按index有序的</span><br><span class="line">#在用字典生成Series的时候,也可以指定索引,</span><br><span class="line">#当索引中值对应的字典中的值不存在的时候,则此索引的值标记为Missing,NA,</span><br><span class="line">#并且可以通过函数(pandas.isnull,pandas.notnull)来确定哪些索引对应的值是没有的。</span><br><span class="line">states = [<span class="string">'California'</span>, <span class="string">'Ohio'</span>, <span class="string">'Oregon'</span>, <span class="string">'Texas'</span>]</span><br><span class="line">ser3 = Series(sdata,index = states)</span><br><span class="line">In [<span class="number">50</span>]: ser3</span><br><span class="line">Out[<span class="number">50</span>]: </span><br><span class="line">California NaN</span><br><span class="line">Ohio <span class="number">35000.0</span></span><br><span class="line">Oregon <span class="number">16000.0</span></span><br><span class="line">Texas <span class="number">71000.0</span></span><br><span class="line">dtype: float64</span><br><span class="line"># 判断哪些值为空</span><br><span class="line">In [<span class="number">51</span>]: pd.isnull(ser3)</span><br><span class="line">Out[<span class="number">51</span>]: </span><br><span class="line">California <span class="literal">True</span></span><br><span class="line">Ohio <span class="literal">False</span></span><br><span class="line">Oregon <span class="literal">False</span></span><br><span class="line">Texas <span class="literal">False</span></span><br><span class="line">dtype: bool</span><br><span class="line">In [<span class="number">52</span>]: pd.notnull(ser3)</span><br><span class="line">Out[<span class="number">52</span>]: </span><br><span class="line">California <span class="literal">False</span></span><br><span class="line">Ohio <span class="literal">True</span></span><br><span class="line">Oregon <span class="literal">True</span></span><br><span class="line">Texas <span class="literal">True</span></span><br><span class="line">dtype: bool</span><br></pre></td></tr></table></figure>
<h2 id="访问Series中的元素和索引"><a href="#访问Series中的元素和索引" class="headerlink" title="访问Series中的元素和索引"></a>访问Series中的元素和索引</h2><figure class="highlight prolog"><table><tr><td class="gutter"><pre><span class="line">1</span><br><span class="line">2</span><br><span class="line">3</span><br><span class="line">4</span><br><span class="line">5</span><br><span class="line">6</span><br><span class="line">7</span><br><span class="line">8</span><br><span class="line">9</span><br><span class="line">10</span><br><span class="line">11</span><br><span class="line">12</span><br><span class="line">13</span><br><span class="line">14</span><br><span class="line">15</span><br><span class="line">16</span><br><span class="line">17</span><br><span class="line">18</span><br><span class="line">19</span><br><span class="line">20</span><br><span class="line">21</span><br><span class="line">22</span><br></pre></td><td class="code"><pre><span class="line">se2</span><br><span class="line"><span class="symbol">Out</span>[<span class="number">159</span>]: </span><br><span class="line">a <span class="number">0</span></span><br><span class="line">b <span class="number">1</span></span><br><span class="line">c <span class="number">2</span></span><br><span class="line">d <span class="number">3</span></span><br><span class="line">dtype: int64</span><br><span class="line"># 访问索引为<span class="string">"a"</span>,<span class="string">"c"</span>的元素</span><br><span class="line">se2[[<span class="string">"a"</span>,<span class="string">"c"</span>]]</span><br><span class="line"><span class="symbol">Out</span>[<span class="number">160</span>]: </span><br><span class="line">a <span class="number">0</span></span><br><span class="line">c <span class="number">2</span></span><br><span class="line">dtype: int64</span><br><span class="line"># 访问索引为<span class="string">"a"</span>的元素</span><br><span class="line">se2[<span class="string">"a"</span>]</span><br><span class="line"><span class="symbol">Out</span>[<span class="number">161</span>]: <span class="number">0</span></span><br><span class="line"># 获取所有的值</span><br><span class="line">se2.values</span><br><span class="line"><span class="symbol">Out</span>[<span class="number">162</span>]: array([<span class="number">0</span>, <span class="number">1</span>, <span class="number">2</span>, <span class="number">3</span>], dtype=int64)</span><br><span class="line"># 获取所有的索引</span><br><span class="line">se2.index</span><br><span class="line"><span class="symbol">Out</span>[<span class="number">163</span>]: <span class="symbol">Index</span>([<span class="string">'a'</span>, <span class="string">'b'</span>, <span class="string">'c'</span>, <span class="string">'d'</span>], dtype=<span class="string">'object'</span>)</span><br></pre></td></tr></table></figure>
<h2 id="简单运算"><a href="#简单运算" class="headerlink" title="简单运算"></a>简单运算</h2><p>在pandas的Series中,会保留NumPy的数组操作(用布尔数组过滤数据,标量乘法,以及使用数学函数),并同时保持引用的使用.<br><figure class="highlight css"><table><tr><td class="gutter"><pre><span class="line">1</span><br><span class="line">2</span><br><span class="line">3</span><br><span class="line">4</span><br><span class="line">5</span><br><span class="line">6</span><br><span class="line">7</span><br><span class="line">8</span><br><span class="line">9</span><br><span class="line">10</span><br><span class="line">11</span><br><span class="line">12</span><br><span class="line">13</span><br><span class="line">14</span><br><span class="line">15</span><br><span class="line">16</span><br><span class="line">17</span><br><span class="line">18</span><br><span class="line">19</span><br></pre></td><td class="code"><pre><span class="line"><span class="selector-tag">se2</span><span class="selector-attr">[se2>2]</span></span><br><span class="line"><span class="selector-tag">Out</span><span class="selector-attr">[165]</span>: </span><br><span class="line"><span class="selector-tag">d</span> 3</span><br><span class="line"><span class="selector-tag">dtype</span>: <span class="selector-tag">int64</span></span><br><span class="line"><span class="selector-tag">se2</span>*2</span><br><span class="line"><span class="selector-tag">Out</span><span class="selector-attr">[166]</span>: </span><br><span class="line"><span class="selector-tag">a</span> 0</span><br><span class="line"><span class="selector-tag">b</span> 2</span><br><span class="line"><span class="selector-tag">c</span> 4</span><br><span class="line"><span class="selector-tag">d</span> 6</span><br><span class="line"><span class="selector-tag">dtype</span>: <span class="selector-tag">int64</span></span><br><span class="line"></span><br><span class="line"><span class="selector-tag">np</span><span class="selector-class">.exp</span>(<span class="selector-tag">se2</span>)</span><br><span class="line"><span class="selector-tag">Out</span><span class="selector-attr">[167]</span>: </span><br><span class="line"><span class="selector-tag">a</span> 1<span class="selector-class">.000000</span></span><br><span class="line"><span class="selector-tag">b</span> 2<span class="selector-class">.718282</span></span><br><span class="line"><span class="selector-tag">c</span> 7<span class="selector-class">.389056</span></span><br><span class="line"><span class="selector-tag">d</span> 20<span class="selector-class">.085537</span></span><br><span class="line"><span class="selector-tag">dtype</span>: <span class="selector-tag">float64</span></span><br></pre></td></tr></table></figure></p>
<h2 id="DataFrame"><a href="#DataFrame" class="headerlink" title="DataFrame"></a>DataFrame</h2><p>DataFrame是一个表格型的数据结构 它含有一组有序的列,每列可以是不同的值类型(数值/字符串/布尔型值) 它有行/列索引,可看做由Series组成的字典(共同用一个索引)<br><figure class="highlight stylus"><table><tr><td class="gutter"><pre><span class="line">1</span><br><span class="line">2</span><br><span class="line">3</span><br><span class="line">4</span><br><span class="line">5</span><br><span class="line">6</span><br><span class="line">7</span><br></pre></td><td class="code"><pre><span class="line">#DataFrame</span><br><span class="line">d = {<span class="string">'state'</span>:[<span class="string">'1'</span>,<span class="string">'2'</span>],<span class="string">'year'</span>:[<span class="string">'a'</span>,<span class="string">'b'</span>],<span class="string">'pop'</span>:[<span class="string">'x'</span>,<span class="string">'y'</span>]}</span><br><span class="line">frame = pd.DataFrame(d)</span><br><span class="line">frame</span><br><span class="line"> state year pop</span><br><span class="line"><span class="number">0</span> <span class="number">1</span> <span class="selector-tag">a</span> x</span><br><span class="line"><span class="number">1</span> <span class="number">2</span> <span class="selector-tag">b</span> y</span><br></pre></td></tr></table></figure></p>
<h2 id="DataFrame基本用法"><a href="#DataFrame基本用法" class="headerlink" title="DataFrame基本用法"></a>DataFrame基本用法</h2><h3 id="追加数据"><a href="#追加数据" class="headerlink" title="追加数据"></a>追加数据</h3><figure class="highlight stylus"><table><tr><td class="gutter"><pre><span class="line">1</span><br><span class="line">2</span><br><span class="line">3</span><br><span class="line">4</span><br><span class="line">5</span><br><span class="line">6</span><br><span class="line">7</span><br></pre></td><td class="code"><pre><span class="line">frame2 =pd.DataFrame([[<span class="string">'z'</span>,<span class="string">'3'</span>,<span class="string">'c'</span>],[<span class="string">'x'</span>,<span class="string">'4'</span>,<span class="string">'d'</span>]],<span class="attribute">columns</span>=[<span class="string">'pop'</span>,<span class="string">'state'</span>,<span class="string">'year'</span>])</span><br><span class="line">frame</span><br><span class="line"> pop state year</span><br><span class="line"><span class="number">0</span> x <span class="number">1</span> a</span><br><span class="line"><span class="number">1</span> y <span class="number">2</span> b</span><br><span class="line"><span class="number">2</span> z <span class="number">3</span> c</span><br><span class="line"><span class="number">3</span> x <span class="number">4</span> d</span><br></pre></td></tr></table></figure>
<h3 id="拼接数据"><a href="#拼接数据" class="headerlink" title="拼接数据"></a>拼接数据</h3><figure class="highlight lsl"><table><tr><td class="gutter"><pre><span class="line">1</span><br><span class="line">2</span><br><span class="line">3</span><br><span class="line">4</span><br><span class="line">5</span><br><span class="line">6</span><br><span class="line">7</span><br></pre></td><td class="code"><pre><span class="line">pd.concat([frame,frame2])</span><br><span class="line">frame</span><br><span class="line"> pop <span class="section">state</span> year</span><br><span class="line"><span class="number">0</span> x <span class="number">1</span> a</span><br><span class="line"><span class="number">1</span> y <span class="number">2</span> b</span><br><span class="line"><span class="number">0</span> z <span class="number">3</span> c</span><br><span class="line"><span class="number">1</span> x <span class="number">4</span> d</span><br></pre></td></tr></table></figure>
<h3 id="从csv导入数据"><a href="#从csv导入数据" class="headerlink" title="从csv导入数据"></a>从csv导入数据</h3><figure class="highlight haskell"><table><tr><td class="gutter"><pre><span class="line">1</span><br><span class="line">2</span><br><span class="line">3</span><br><span class="line">4</span><br><span class="line">5</span><br><span class="line">6</span><br><span class="line">7</span><br><span class="line">8</span><br><span class="line">9</span><br></pre></td><td class="code"><pre><span class="line"><span class="class"><span class="keyword">data</span> = pd.read_excel('<span class="type">D</span>:\\<span class="type">Users</span>\\<span class="title">zyb</span>\\<span class="type">Desktop</span>\\<span class="title">plan</span>.<span class="title">xlsx'</span>,<span class="title">header</span>=5)</span></span><br><span class="line"><span class="class"><span class="keyword">data</span></span></span><br><span class="line"><span class="type">Out</span>[<span class="number">189</span>]: </span><br><span class="line"> <span class="number">5</span> <span class="type">FR</span>接入数据库测试 <span class="number">1</span> <span class="type">Unnamed</span>: <span class="number">3</span></span><br><span class="line"><span class="number">0</span> <span class="number">6.0</span> 整体测试 <span class="number">1</span> <span class="type">NaN</span></span><br><span class="line"><span class="number">1</span> <span class="type">NaN</span> 总计 <span class="number">8</span> <span class="type">NaN</span></span><br><span class="line"></span><br><span class="line"><span class="class"><span class="keyword">type</span>(<span class="title">data</span>)</span></span><br><span class="line"><span class="type">Out</span>[<span class="number">190</span>]: pandas.core.frame.<span class="type">DataFrame</span></span><br></pre></td></tr></table></figure>
<h3 id="显示头尾几行"><a href="#显示头尾几行" class="headerlink" title="显示头尾几行"></a>显示头尾几行</h3><figure class="highlight haskell"><table><tr><td class="gutter"><pre><span class="line">1</span><br><span class="line">2</span><br></pre></td><td class="code"><pre><span class="line"><span class="class"><span class="keyword">data</span>.head()</span></span><br><span class="line"><span class="class"><span class="keyword">data</span>.tail()</span></span><br></pre></td></tr></table></figure>
<h3 id="显示列名-值"><a href="#显示列名-值" class="headerlink" title="显示列名/值"></a>显示列名/值</h3><figure class="highlight prolog"><table><tr><td class="gutter"><pre><span class="line">1</span><br><span class="line">2</span><br><span class="line">3</span><br><span class="line">4</span><br><span class="line">5</span><br><span class="line">6</span><br><span class="line">7</span><br></pre></td><td class="code"><pre><span class="line">data.columns</span><br><span class="line"><span class="symbol">Out</span>[<span class="number">6</span>]: <span class="symbol">Index</span>([<span class="number">5</span>, <span class="string">'FR接入数据库测试'</span>, <span class="number">1</span>, <span class="string">'Unnamed: 3'</span>], dtype=<span class="string">'object'</span>)</span><br><span class="line"></span><br><span class="line">data.values</span><br><span class="line"><span class="symbol">Out</span>[<span class="number">7</span>]: </span><br><span class="line">array([[<span class="number">6.0</span>, <span class="string">'整体测试'</span>, <span class="number">1</span>, nan],</span><br><span class="line"> [nan, <span class="string">'总计'</span>, <span class="number">8</span>, nan]], dtype=object)</span><br></pre></td></tr></table></figure>
<h3 id="筛选、缺失值处理"><a href="#筛选、缺失值处理" class="headerlink" title="筛选、缺失值处理"></a>筛选、缺失值处理</h3><figure class="highlight kotlin"><table><tr><td class="gutter"><pre><span class="line">1</span><br><span class="line">2</span><br><span class="line">3</span><br><span class="line">4</span><br><span class="line">5</span><br><span class="line">6</span><br><span class="line">7</span><br><span class="line">8</span><br><span class="line">9</span><br><span class="line">10</span><br><span class="line">11</span><br><span class="line">12</span><br></pre></td><td class="code"><pre><span class="line">#筛选行/列</span><br><span class="line"><span class="keyword">data</span>.iloc[<span class="number">3</span>:<span class="number">6</span>]</span><br><span class="line"><span class="keyword">data</span>.iloc[:,<span class="number">3</span>:<span class="number">6</span>]</span><br><span class="line"><span class="keyword">data</span>.loc[:,[<span class="string">"school"</span>, <span class="string">"age"</span>]]</span><br><span class="line"></span><br><span class="line">#条件筛选</span><br><span class="line"><span class="keyword">data</span>[<span class="keyword">data</span>[<span class="string">"G1"</span>]<<span class="number">10</span>]</span><br><span class="line"></span><br><span class="line">#缺失值处理</span><br><span class="line"><span class="keyword">data</span>.fillna(value=<span class="number">0</span>)</span><br><span class="line"><span class="keyword">data</span>.dropna(how=<span class="string">"any"</span>)</span><br><span class="line"><span class="keyword">data</span>.isnull()</span><br></pre></td></tr></table></figure>
<h3 id="排序"><a href="#排序" class="headerlink" title="排序"></a><strong>排序</strong></h3><figure class="highlight routeros"><table><tr><td class="gutter"><pre><span class="line">1</span><br><span class="line">2</span><br><span class="line">3</span><br><span class="line">4</span><br><span class="line">5</span><br><span class="line">6</span><br><span class="line">7</span><br></pre></td><td class="code"><pre><span class="line"><span class="comment">#排序</span></span><br><span class="line">data.sort_values(<span class="string">"G1"</span>, <span class="attribute">ascending</span>=<span class="literal">False</span>)</span><br><span class="line"></span><br><span class="line"><span class="comment">#统计并排序</span></span><br><span class="line"><span class="attribute">s</span>=pd.Series(data2.loc[:,<span class="string">"Medu"</span>])</span><br><span class="line"><span class="attribute">s</span>=s.value_counts()</span><br><span class="line"><span class="attribute">s</span>=s.sort_index(axis=0)</span><br></pre></td></tr></table></figure>
<h3 id="算术运算"><a href="#算术运算" class="headerlink" title="算术运算"></a><strong>算术运算</strong></h3><figure class="highlight applescript"><table><tr><td class="gutter"><pre><span class="line">1</span><br></pre></td><td class="code"><pre><span class="line"><span class="built_in">count</span></span><br></pre></td></tr></table></figure>
<p>非NA值的数量</p>
<figure class="highlight ebnf"><table><tr><td class="gutter"><pre><span class="line">1</span><br></pre></td><td class="code"><pre><span class="line"><span class="attribute">describe</span></span><br></pre></td></tr></table></figure>
<p>针对Series或各DataFrame列计算汇总统计</p>
<figure class="highlight arduino"><table><tr><td class="gutter"><pre><span class="line">1</span><br></pre></td><td class="code"><pre><span class="line"><span class="built_in">min</span>,<span class="built_in">max</span></span><br></pre></td></tr></table></figure>
<p>计算最小值、最大值</p>
<figure class="highlight autohotkey"><table><tr><td class="gutter"><pre><span class="line">1</span><br></pre></td><td class="code"><pre><span class="line"><span class="built_in">argmin,</span> argmax</span><br></pre></td></tr></table></figure>
<p>计算能够获取到最小值和最大值的索引位置(整数)</p>
<figure class="highlight autohotkey"><table><tr><td class="gutter"><pre><span class="line">1</span><br></pre></td><td class="code"><pre><span class="line"><span class="built_in">idxmin,</span> idxmax</span><br></pre></td></tr></table></figure>
<p>计算能够获取到最小值和最大值的索引值</p>
<figure class="highlight ebnf"><table><tr><td class="gutter"><pre><span class="line">1</span><br></pre></td><td class="code"><pre><span class="line"><span class="attribute">quantile</span></span><br></pre></td></tr></table></figure>
<p>计算样本的分位数(0到1)</p>
<figure class="highlight axapta"><table><tr><td class="gutter"><pre><span class="line">1</span><br></pre></td><td class="code"><pre><span class="line"><span class="keyword">sum</span></span><br></pre></td></tr></table></figure>
<p>值的总和</p>
<figure class="highlight ebnf"><table><tr><td class="gutter"><pre><span class="line">1</span><br></pre></td><td class="code"><pre><span class="line"><span class="attribute">mean</span></span><br></pre></td></tr></table></figure>
<p>值的平均数</p>
<figure class="highlight ebnf"><table><tr><td class="gutter"><pre><span class="line">1</span><br></pre></td><td class="code"><pre><span class="line"><span class="attribute">media</span></span><br></pre></td></tr></table></figure>
<p>值的算术中位数(50%分位数)</p>
<figure class="highlight ebnf"><table><tr><td class="gutter"><pre><span class="line">1</span><br></pre></td><td class="code"><pre><span class="line"><span class="attribute">mad</span></span><br></pre></td></tr></table></figure>
<p>根据平均值计算平均绝对离差</p>
<figure class="highlight maxima"><table><tr><td class="gutter"><pre><span class="line">1</span><br></pre></td><td class="code"><pre><span class="line"><span class="built_in">var</span>, <span class="built_in">std</span></span><br></pre></td></tr></table></figure>
<p>样本值的方差、标准差</p>
<figure class="highlight excel"><table><tr><td class="gutter"><pre><span class="line">1</span><br></pre></td><td class="code"><pre><span class="line"><span class="built_in">skew</span>, <span class="built_in">kurt</span></span><br></pre></td></tr></table></figure>
<p>样本值的偏度(三阶矩)、峰度(四阶矩)</p>
<figure class="highlight autohotkey"><table><tr><td class="gutter"><pre><span class="line">1</span><br></pre></td><td class="code"><pre><span class="line"><span class="built_in">cumsum,</span> cumprod</span><br></pre></td></tr></table></figure>
<p>样本值的累计和/累计积</p>
<figure class="highlight autohotkey"><table><tr><td class="gutter"><pre><span class="line">1</span><br></pre></td><td class="code"><pre><span class="line"><span class="built_in">cummin,</span> cummax</span><br></pre></td></tr></table></figure>
<p>样本值的累计最小、最大值</p>
<figure class="highlight ebnf"><table><tr><td class="gutter"><pre><span class="line">1</span><br></pre></td><td class="code"><pre><span class="line"><span class="attribute">diff</span></span><br></pre></td></tr></table></figure>
<p>计算一阶差分(对时间序列很有用)</p>
<figure class="highlight plain"><table><tr><td class="gutter"><pre><span class="line">1</span><br></pre></td><td class="code"><pre><span class="line">pct_change</span><br></pre></td></tr></table></figure>
<p>计算百分数变化</p>
<h3 id="groupby-统计、数据透视表"><a href="#groupby-统计、数据透视表" class="headerlink" title="groupby**统计、数据透视表**"></a><strong>groupby**</strong>统计、数据透视表**</h3><figure class="highlight prolog"><table><tr><td class="gutter"><pre><span class="line">1</span><br><span class="line">2</span><br><span class="line">3</span><br><span class="line">4</span><br><span class="line">5</span><br><span class="line">6</span><br><span class="line">7</span><br><span class="line">8</span><br></pre></td><td class="code"><pre><span class="line">#groupby</span><br><span class="line">data.groupby([<span class="string">'sex'</span>, <span class="string">'studytime'</span>])[<span class="string">'G1'</span>].mean()</span><br><span class="line"></span><br><span class="line">group1 = data.groupby(<span class="string">'sex'</span>)</span><br><span class="line">group1[<span class="string">'G1'</span>,<span class="string">'G2'</span>].agg([<span class="string">'mean'</span>,<span class="string">'sum'</span>])</span><br><span class="line"></span><br><span class="line">#数据透视表</span><br><span class="line">pd.pivot_table(data, values=<span class="string">'G1'</span>, index=[<span class="string">'sex'</span>],columns=[<span class="string">'age'</span>], aggfunc=np.mean)</span><br></pre></td></tr></table></figure>
<h3 id="类别转换"><a href="#类别转换" class="headerlink" title="类别转换"></a><strong>类别转换</strong></h3><figure class="highlight makefile"><table><tr><td class="gutter"><pre><span class="line">1</span><br><span class="line">2</span><br><span class="line">3</span><br><span class="line">4</span><br><span class="line">5</span><br><span class="line">6</span><br><span class="line">7</span><br></pre></td><td class="code"><pre><span class="line"><span class="comment">#类别转换</span></span><br><span class="line">medu=data[<span class="string">"Medu"</span>].astype(<span class="string">"category"</span>)</span><br><span class="line">medu.cat.categories=[<span class="string">"None"</span>,<span class="string">"<4th grade"</span>,<span class="string">"5th to 9th grade"</span>,<span class="string">"secondary education"</span>,<span class="string">"higher education"</span>]</span><br><span class="line"></span><br><span class="line"><span class="comment">#转换成哑元</span></span><br><span class="line">sex_dummies = pd.get_dummies(X_train['sex'], prefix='sex')</span><br><span class="line">X_train=X_train.join(sex_dummies)</span><br></pre></td></tr></table></figure>
</div>
<div>
<ul class="post-copyright">
<li class="post-copyright-author">
<strong>本文作者:</strong>
小蜜蜂
</li>
<li class="post-copyright-link">
<strong>本文链接:</strong>
<a href="https://zyb0408.github.io/2018-11-12-panda使用.html" title="panda使用">https://zyb0408.github.io/2018-11-12-panda使用.html</a>
</li>
<li class="post-copyright-license">
<strong>版权声明: </strong>
本博客所有文章除特别声明外,均采用 <a href="https://creativecommons.org/licenses/by-nc-sa/3.0/" rel="external nofollow" target="_blank">CC BY-NC-SA 3.0</a> 许可协议。转载请注明出处!
</li>
</ul>
</div>
<footer class="post-footer">
<div class="post-nav">
<div class="post-nav-next post-nav-item">
<a href="/2018-11-12-numpy使用.html" rel="next" title="numpy使用">
<i class="fa fa-chevron-left"></i> numpy使用
</a>
</div>
<span class="post-nav-divider"></span>
<div class="post-nav-prev post-nav-item">
<a href="/2018-11-12-matplotlib使用.html" rel="prev" title="matplotlib使用">
matplotlib使用 <i class="fa fa-chevron-right"></i>
</a>
</div>
</div>
</footer>
</div>
</article>
<div class="post-spread">
</div>
</div>
</div>
</div>
<div class="sidebar-toggle">
<div class="sidebar-toggle-line-wrap">
<span class="sidebar-toggle-line sidebar-toggle-line-first"></span>
<span class="sidebar-toggle-line sidebar-toggle-line-middle"></span>
<span class="sidebar-toggle-line sidebar-toggle-line-last"></span>
</div>
</div>
<aside id="sidebar" class="sidebar">
<div class="sidebar-inner">
<ul class="sidebar-nav motion-element">
<li class="sidebar-nav-toc sidebar-nav-active" data-target="post-toc-wrap">
文章目录
</li>
<li class="sidebar-nav-overview" data-target="site-overview-wrap">
站点概览
</li>
</ul>
<section class="site-overview-wrap sidebar-panel">
<div class="site-overview">
<div class="site-author motion-element" itemprop="author" itemscope="" itemtype="http://schema.org/Person">
<img class="site-author-image" itemprop="image" src="/images/favicon-32x32-next.png" alt="小蜜蜂">
<p class="site-author-name" itemprop="name">小蜜蜂</p>
<p class="site-description motion-element" itemprop="description">小蜜蜂学计算机</p>
</div>
<nav class="site-state motion-element">
<div class="site-state-item site-state-posts">
<a href="/archives/">
<span class="site-state-item-count">52</span>
<span class="site-state-item-name">日志</span>
</a>
</div>
<div class="site-state-item site-state-categories">
<a href="/categories/index.html">
<span class="site-state-item-count">18</span>
<span class="site-state-item-name">分类</span>
</a>
</div>
<div class="site-state-item site-state-tags">
<a href="/tags/index.html">
<span class="site-state-item-count">22</span>
<span class="site-state-item-name">标签</span>
</a>
</div>
</nav>
<div class="links-of-author motion-element">
<span class="links-of-author-item">
<a href="https://github.com/zyb0408" target="_blank" title="GitHub">
<i class="fa fa-fw fa-github"></i>GitHub</a>
</span>
</div>
<div class="links-of-blogroll motion-element links-of-blogroll-block">
<div class="links-of-blogroll-title">
<i class="fa fa-fw fa-link"></i>
Links
</div>
<ul class="links-of-blogroll-list">
<li class="links-of-blogroll-item">
<a href="https://dhupxd.github.io" title="学姐" target="_blank">学姐</a>
</li>
<li class="links-of-blogroll-item">
<a href="https://ztt001.github.io" title="学妹" target="_blank">学妹</a>
</li>
</ul>
</div>
</div>
</section>
<!--noindex-->
<section class="post-toc-wrap motion-element sidebar-panel sidebar-panel-active">
<div class="post-toc">
<div class="post-toc-content"><ol class="nav"><li class="nav-item nav-level-2"><a class="nav-link" href="#数据结构之Series"><span class="nav-number">1.</span> <span class="nav-text">数据结构之Series</span></a></li><li class="nav-item nav-level-2"><a class="nav-link" href="#访问Series中的元素和索引"><span class="nav-number">2.</span> <span class="nav-text">访问Series中的元素和索引</span></a></li><li class="nav-item nav-level-2"><a class="nav-link" href="#简单运算"><span class="nav-number">3.</span> <span class="nav-text">简单运算</span></a></li><li class="nav-item nav-level-2"><a class="nav-link" href="#DataFrame"><span class="nav-number">4.</span> <span class="nav-text">DataFrame</span></a></li><li class="nav-item nav-level-2"><a class="nav-link" href="#DataFrame基本用法"><span class="nav-number">5.</span> <span class="nav-text">DataFrame基本用法</span></a><ol class="nav-child"><li class="nav-item nav-level-3"><a class="nav-link" href="#追加数据"><span class="nav-number">5.1.</span> <span class="nav-text">追加数据</span></a></li><li class="nav-item nav-level-3"><a class="nav-link" href="#拼接数据"><span class="nav-number">5.2.</span> <span class="nav-text">拼接数据</span></a></li><li class="nav-item nav-level-3"><a class="nav-link" href="#从csv导入数据"><span class="nav-number">5.3.</span> <span class="nav-text">从csv导入数据</span></a></li><li class="nav-item nav-level-3"><a class="nav-link" href="#显示头尾几行"><span class="nav-number">5.4.</span> <span class="nav-text">显示头尾几行</span></a></li><li class="nav-item nav-level-3"><a class="nav-link" href="#显示列名-值"><span class="nav-number">5.5.</span> <span class="nav-text">显示列名/值</span></a></li><li class="nav-item nav-level-3"><a class="nav-link" href="#筛选、缺失值处理"><span class="nav-number">5.6.</span> <span class="nav-text">筛选、缺失值处理</span></a></li><li class="nav-item nav-level-3"><a class="nav-link" href="#排序"><span class="nav-number">5.7.</span> <span class="nav-text">排序</span></a></li><li class="nav-item nav-level-3"><a class="nav-link" href="#算术运算"><span class="nav-number">5.8.</span> <span class="nav-text">算术运算</span></a></li><li class="nav-item nav-level-3"><a class="nav-link" href="#groupby-统计、数据透视表"><span class="nav-number">5.9.</span> <span class="nav-text">groupby**统计、数据透视表**</span></a></li><li class="nav-item nav-level-3"><a class="nav-link" href="#类别转换"><span class="nav-number">5.10.</span> <span class="nav-text">类别转换</span></a></li></ol></li></ol></div>
</div>
</section>
<!--/noindex-->
</div>
</aside>
</div>
</main>
<footer id="footer" class="footer">
<div class="footer-inner">
<script async src="https://dn-lbstatics.qbox.me/busuanzi/2.3/busuanzi.pure.mini.js"></script>
<div class="copyright">© 2017 — <span itemprop="copyrightYear">2019</span>
<span class="with-love">
<i class="fa fa-user"></i>
</span>
<span class="author" itemprop="copyrightHolder">小蜜蜂</span>
<span class="post-meta-divider">|</span>
<span class="post-meta-item-icon">
<i class="fa fa-area-chart"></i>
</span>
<span class="post-meta-item-text">Site words total count:</span>
<span title="Site words total count">88.8k</span>
</div>
<div class="powered-by">
<i class="fa fa-user-md"></i><span id="busuanzi_container_site_uv">
本站访客数:<span id="busuanzi_value_site_uv"></span>
</span>
</div>
<script>
var seconds = 1000;
var minutes = seconds * 60;
var hours = minutes * 60;
var days = hours * 24;
var years = days * 365;
var birthDay = Date.UTC(2017,09,17,00,00,00); // 这里设置建站时间
setInterval(function() {
var today = new Date();
var todayYear = today.getFullYear();
var todayMonth = today.getMonth()+1;
var todayDate = today.getDate();
var todayHour = today.getHours();
var todayMinute = today.getMinutes();
var todaySecond = today.getSeconds();
var now = Date.UTC(todayYear,todayMonth,todayDate,todayHour,todayMinute,todaySecond);
var diff = now - birthDay;
var diffYears = Math.floor(diff/years);
var diffDays = Math.floor((diff/days)-diffYears*365);
var diffHours = Math.floor((diff-(diffYears*365+diffDays)*days)/hours);
var diffMinutes = Math.floor((diff-(diffYears*365+diffDays)*days-diffHours*hours)/minutes);
var diffSeconds = Math.floor((diff-(diffYears*365+diffDays)*days-diffHours*hours-diffMinutes*minutes)/seconds);
document.getElementById('showDays').innerHTML="本站已运行 "+diffYears+" 年 "+diffDays+" 天 "+diffHours+" 小时 "+diffMinutes+" 分钟 "+diffSeconds+" 秒";
}, 1000);
</script>
<script async src="//busuanzi.ibruce.info/busuanzi/2.3/busuanzi.pure.mini.js">
</script>
<div class="busuanzi-count">
<script async src="https://dn-lbstatics.qbox.me/busuanzi/2.3/busuanzi.pure.mini.js"></script>
<span class="site-uv">
<i class="fa fa-user"></i>
<span class="busuanzi-value" id="busuanzi_value_site_uv"></span>
</span>
<span class="site-pv">
<i class="fa fa-eye"></i>
<span class="busuanzi-value" id="busuanzi_value_site_pv"></span>
</span>
</div>
</div>
</footer>
<div class="back-to-top">
<i class="fa fa-arrow-up"></i>
<span id="scrollpercent"><span>0</span>%</span>
</div>
</div>
<script type="text/javascript">
if (Object.prototype.toString.call(window.Promise) !== '[object Function]') {
window.Promise = null;
}
</script>
<script type="text/javascript" src="/lib/jquery/index.js?v=2.1.3"></script>
<script type="text/javascript" src="/lib/fastclick/lib/fastclick.min.js?v=1.0.6"></script>
<script type="text/javascript" src="/lib/jquery_lazyload/jquery.lazyload.js?v=1.9.7"></script>
<script type="text/javascript" src="/lib/velocity/velocity.min.js?v=1.2.1"></script>
<script type="text/javascript" src="/lib/velocity/velocity.ui.min.js?v=1.2.1"></script>
<script type="text/javascript" src="/lib/fancybox/source/jquery.fancybox.pack.js?v=2.1.5"></script>
<script type="text/javascript" src="/lib/canvas-nest/canvas-nest.min.js"></script>
<script type="text/javascript" src="/js/src/utils.js?v=5.1.4"></script>
<script type="text/javascript" src="/js/src/motion.js?v=5.1.4"></script>
<script type="text/javascript" src="/js/src/affix.js?v=5.1.4"></script>
<script type="text/javascript" src="/js/src/schemes/pisces.js?v=5.1.4"></script>
<script type="text/javascript" src="/js/src/scrollspy.js?v=5.1.4"></script>
<script type="text/javascript" src="/js/src/post-details.js?v=5.1.4"></script>
<script type="text/javascript" src="/js/src/bootstrap.js?v=5.1.4"></script>
<script type="text/javascript">
// Popup Window;
var isfetched = false;
var isXml = true;
// Search DB path;
var search_path = "search.xml";
if (search_path.length === 0) {
search_path = "search.xml";
} else if (/json$/i.test(search_path)) {
isXml = false;
}
var path = "/" + search_path;
// monitor main search box;
var onPopupClose = function (e) {
$('.popup').hide();
$('#local-search-input').val('');
$('.search-result-list').remove();
$('#no-result').remove();
$(".local-search-pop-overlay").remove();
$('body').css('overflow', '');
}
function proceedsearch() {
$("body")
.append('<div class="search-popup-overlay local-search-pop-overlay"></div>')
.css('overflow', 'hidden');
$('.search-popup-overlay').click(onPopupClose);
$('.popup').toggle();
var $localSearchInput = $('#local-search-input');
$localSearchInput.attr("autocapitalize", "none");
$localSearchInput.attr("autocorrect", "off");
$localSearchInput.focus();
}
// search function;
var searchFunc = function(path, search_id, content_id) {
'use strict';
// start loading animation
$("body")
.append('<div class="search-popup-overlay local-search-pop-overlay">' +
'<div id="search-loading-icon">' +
'<i class="fa fa-spinner fa-pulse fa-5x fa-fw"></i>' +
'</div>' +