-
Notifications
You must be signed in to change notification settings - Fork 227
/
Copy pathVehicles_detection.py
35 lines (25 loc) · 1 KB
/
Vehicles_detection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
# OpenCV Python program to detect cars in video frame
# import libraries of python OpenCV
import cv2
# capture frames from a video
cap = cv2.VideoCapture('video.avi')
# Trained XML classifiers describes some features of some object we want to detect
car_cascade = cv2.CascadeClassifier('cars.xml')
# loop runs if capturing has been initialized.
while True:
# reads frames from a video
ret, frames = cap.read()
# convert to gray scale of each frames
gray = cv2.cvtColor(frames, cv2.COLOR_BGR2GRAY)
# Detects cars of different sizes in the input image
cars = car_cascade.detectMultiScale(gray, 1.1, 1)
# To draw a rectangle in each cars
for (x,y,w,h) in cars:
cv2.rectangle(frames,(x,y),(x+w,y+h),(0,0,255),2)
# Display frames in a window
cv2.imshow('video2', frames)
# Wait for Esc key to stop
if cv2.waitKey(33) == 27:
break
# De-allocate any associated memory usage
cv2.destroyAllWindows()