@@ -21,7 +21,7 @@ open Magma M
21
21
-- Re-export divisibility relations publicly
22
22
23
23
open import Algebra.Definitions.RawMagma rawMagma public
24
- using (_∣_; _∤_; _∣∣ _; _∤∤ _; _∣ˡ_; _∤ˡ_; _∣ʳ_; _∤ʳ_; _,_)
24
+ using (_∣_; _∤_; _∥ _; _∦ _; _∣ˡ_; _∤ˡ_; _∣ʳ_; _∤ʳ_; _,_)
25
25
26
26
------------------------------------------------------------------------
27
27
-- Properties of divisibility
@@ -54,34 +54,34 @@ xy≈z⇒y∣z x y xy≈z = ∣-respʳ-≈ xy≈z (x∣yx y x)
54
54
∤-resp-≈ = ∤-respʳ-≈ , ∤-respˡ-≈
55
55
56
56
------------------------------------------------------------------------
57
- -- Properties of mutual divisibility _∣∣ _
57
+ -- Properties of mutual divisibility _∥ _
58
58
59
- ∣∣ -sym : Symmetric _∣∣ _
60
- ∣∣ -sym = swap
59
+ ∥ -sym : Symmetric _∥ _
60
+ ∥ -sym = swap
61
61
62
- ∣∣ -respˡ-≈ : _∣∣ _ Respectsˡ _≈_
63
- ∣∣ -respˡ-≈ x≈z (x∣y , y∣x) = ∣-respˡ-≈ x≈z x∣y , ∣-respʳ-≈ x≈z y∣x
62
+ ∥ -respˡ-≈ : _∥ _ Respectsˡ _≈_
63
+ ∥ -respˡ-≈ x≈z (x∣y , y∣x) = ∣-respˡ-≈ x≈z x∣y , ∣-respʳ-≈ x≈z y∣x
64
64
65
- ∣∣ -respʳ-≈ : _∣∣ _ Respectsʳ _≈_
66
- ∣∣ -respʳ-≈ y≈z (x∣y , y∣x) = ∣-respʳ-≈ y≈z x∣y , ∣-respˡ-≈ y≈z y∣x
65
+ ∥ -respʳ-≈ : _∥ _ Respectsʳ _≈_
66
+ ∥ -respʳ-≈ y≈z (x∣y , y∣x) = ∣-respʳ-≈ y≈z x∣y , ∣-respˡ-≈ y≈z y∣x
67
67
68
- ∣∣ -resp-≈ : _∣∣ _ Respects₂ _≈_
69
- ∣∣ -resp-≈ = ∣∣ -respʳ-≈ , ∣∣ -respˡ-≈
68
+ ∥ -resp-≈ : _∥ _ Respects₂ _≈_
69
+ ∥ -resp-≈ = ∥ -respʳ-≈ , ∥ -respˡ-≈
70
70
71
71
------------------------------------------------------------------------
72
72
-- Properties of mutual non-divisibility _∤∤_
73
73
74
- ∤∤ -sym : Symmetric _∤∤ _
75
- ∤∤ -sym x∤∤ y y∣∣ x = contradiction (∣∣ -sym y∣∣ x) x∤∤ y
74
+ ∦ -sym : Symmetric _∦ _
75
+ ∦ -sym x∦ y y∥ x = contradiction (∥ -sym y∥ x) x∦ y
76
76
77
- ∤∤ -respˡ-≈ : _∤∤ _ Respectsˡ _≈_
78
- ∤∤ -respˡ-≈ x≈y x∤∤ z y∣∣ z = contradiction (∣∣ -respˡ-≈ (sym x≈y) y∣∣ z) x∤∤ z
77
+ ∦ -respˡ-≈ : _∦ _ Respectsˡ _≈_
78
+ ∦ -respˡ-≈ x≈y x∦ z y∥ z = contradiction (∥ -respˡ-≈ (sym x≈y) y∥ z) x∦ z
79
79
80
- ∤∤ -respʳ-≈ : _∤∤ _ Respectsʳ _≈_
81
- ∤∤ -respʳ-≈ x≈y z∤∤ x z∣∣ y = contradiction (∣∣ -respʳ-≈ (sym x≈y) z∣∣ y) z∤∤ x
80
+ ∦ -respʳ-≈ : _∦ _ Respectsʳ _≈_
81
+ ∦ -respʳ-≈ x≈y z∦ x z∥ y = contradiction (∥ -respʳ-≈ (sym x≈y) z∥ y) z∦ x
82
82
83
- ∤∤ -resp-≈ : _∤∤ _ Respects₂ _≈_
84
- ∤∤ -resp-≈ = ∤∤ -respʳ-≈ , ∤∤ -respˡ-≈
83
+ ∦ -resp-≈ : _∦ _ Respects₂ _≈_
84
+ ∦ -resp-≈ = ∦ -respʳ-≈ , ∦ -respˡ-≈
85
85
86
86
87
87
------------------------------------------------------------------------
@@ -107,3 +107,46 @@ Please use ∣-respʳ-≈ instead. "
107
107
"Warning: ∣-resp was deprecated in v2.2.
108
108
Please use ∣-resp-≈ instead. "
109
109
#-}
110
+
111
+ -- Version 2.3
112
+
113
+ ∣∣-sym = ∥-sym
114
+ {-# WARNING_ON_USAGE ∣∣-sym
115
+ "Warning: ∣∣-sym was deprecated in v2.3.
116
+ Please use ∥-sym instead. "
117
+ #-}
118
+ ∣∣-respˡ-≈ = ∥-respˡ-≈
119
+ {-# WARNING_ON_USAGE ∣∣-respˡ-≈
120
+ "Warning: ∣∣-respˡ-≈ was deprecated in v2.3.
121
+ Please use ∥-respˡ-≈ instead. "
122
+ #-}
123
+ ∣∣-respʳ-≈ = ∥-respʳ-≈
124
+ {-# WARNING_ON_USAGE ∣∣-respʳ-≈
125
+ "Warning: ∣∣-respʳ-≈ was deprecated in v2.3.
126
+ Please use ∥-respʳ-≈ instead. "
127
+ #-}
128
+ ∣∣-resp-≈ = ∥-resp-≈
129
+ {-# WARNING_ON_USAGE ∣∣-resp-≈
130
+ "Warning: ∣∣-resp-≈ was deprecated in v2.3.
131
+ Please use ∥-resp-≈ instead. "
132
+ #-}
133
+ ∤∤-sym = ∦-sym
134
+ {-# WARNING_ON_USAGE ∤∤-sym
135
+ "Warning: ∤∤-sym was deprecated in v2.3.
136
+ Please use ∦-sym instead. "
137
+ #-}
138
+ ∤∤-respˡ-≈ = ∦-respˡ-≈
139
+ {-# WARNING_ON_USAGE ∤∤-respˡ-≈
140
+ "Warning: ∤∤-respˡ-≈ was deprecated in v2.3.
141
+ Please use ∦-respˡ-≈ instead. "
142
+ #-}
143
+ ∤∤-respʳ-≈ = ∦-respʳ-≈
144
+ {-# WARNING_ON_USAGE ∤∤-respʳ-≈
145
+ "Warning: ∤∤-respʳ-≈ was deprecated in v2.3.
146
+ Please use ∦-respʳ-≈ instead. "
147
+ #-}
148
+ ∤∤-resp-≈ = ∦-resp-≈
149
+ {-# WARNING_ON_USAGE ∤∤-resp-≈
150
+ "Warning: ∤∤-resp-≈ was deprecated in v2.3.
151
+ Please use ∦-resp-≈ instead. "
152
+ #-}
0 commit comments