|
| 1 | +------------------------------------------------------------------------ |
| 2 | +-- The Agda standard library |
| 3 | +-- |
| 4 | +-- Properties of infinite streams defined as coinductive records |
| 5 | +------------------------------------------------------------------------ |
| 6 | + |
| 7 | +{-# OPTIONS --safe --without-K --guardedness #-} |
| 8 | + |
| 9 | +module Codata.Guarded.Stream.Properties where |
| 10 | + |
| 11 | +open import Codata.Guarded.Stream |
| 12 | +open import Codata.Guarded.Stream.Relation.Binary.Pointwise |
| 13 | + as B using (_≈_; head; tail; module ≈-Reasoning) |
| 14 | + |
| 15 | +open import Data.List.Base as List using (List; []; _∷_) |
| 16 | +open import Data.List.NonEmpty as List⁺ using (_∷_) |
| 17 | +open import Data.Nat.Base using (ℕ; zero; suc; _+_; _*_) |
| 18 | +import Data.Nat.GeneralisedArithmetic as ℕ |
| 19 | +open import Data.Product as Prod using (_×_; _,_; proj₁; proj₂) |
| 20 | +open import Data.Vec.Base as Vec using (Vec; _∷_) |
| 21 | +open import Function.Base using (const; flip; id; _∘′_; _$′_; _⟨_⟩_; _∘₂′_) |
| 22 | +open import Level using (Level) |
| 23 | +open import Relation.Binary.PropositionalEquality as P using (_≡_; cong; cong₂) |
| 24 | + |
| 25 | +private |
| 26 | + variable |
| 27 | + a b c d : Level |
| 28 | + A : Set a |
| 29 | + B : Set b |
| 30 | + C : Set c |
| 31 | + D : Set d |
| 32 | + |
| 33 | +------------------------------------------------------------------------ |
| 34 | +-- Congruence |
| 35 | + |
| 36 | +cong-lookup : ∀ n {as bs : Stream A} → as ≈ bs → lookup n as ≡ lookup n bs |
| 37 | +cong-lookup = B.lookup |
| 38 | + |
| 39 | +cong-take : ∀ n {as bs : Stream A} → as ≈ bs → take n as ≡ take n bs |
| 40 | +cong-take zero as≈bs = P.refl |
| 41 | +cong-take (suc n) as≈bs = cong₂ _∷_ (as≈bs .head) (cong-take n (as≈bs .tail)) |
| 42 | + |
| 43 | +cong-drop : ∀ n {as bs : Stream A} → as ≈ bs → drop n as ≈ drop n bs |
| 44 | +cong-drop = B.drop⁺ |
| 45 | + |
| 46 | +-- This is not map⁺ because the propositional equality relation is |
| 47 | +-- not the same on the input and output |
| 48 | +cong-map : ∀ (f : A → B) {as bs} → as ≈ bs → map f as ≈ map f bs |
| 49 | +cong-map f as≈bs .head = cong f (as≈bs .head) |
| 50 | +cong-map f as≈bs .tail = cong-map f (as≈bs .tail) |
| 51 | + |
| 52 | +cong-zipWith : ∀ (f : A → B → C) {as bs cs ds} → as ≈ bs → cs ≈ ds → |
| 53 | + zipWith f as cs ≈ zipWith f bs ds |
| 54 | +cong-zipWith f as≈bs cs≈ds .head = cong₂ f (as≈bs .head) (cs≈ds .head) |
| 55 | +cong-zipWith f as≈bs cs≈ds .tail = cong-zipWith f (as≈bs .tail) (cs≈ds .tail) |
| 56 | + |
| 57 | +cong-interleave : {as bs cs ds : Stream A} → as ≈ bs → cs ≈ ds → |
| 58 | + interleave as cs ≈ interleave bs ds |
| 59 | +cong-interleave as≈bs cs≈ds .head = as≈bs .head |
| 60 | +cong-interleave as≈bs cs≈ds .tail = cong-interleave cs≈ds (as≈bs .tail) |
| 61 | + |
| 62 | +cong-chunksOf : ∀ n {as bs : Stream A} → as ≈ bs → chunksOf n as ≈ chunksOf n bs |
| 63 | +cong-chunksOf n as≈bs .head = cong-take n as≈bs |
| 64 | +cong-chunksOf n as≈bs .tail = cong-chunksOf n (cong-drop n as≈bs) |
| 65 | + |
| 66 | +------------------------------------------------------------------------ |
| 67 | +-- Properties of repeat |
| 68 | + |
| 69 | +lookup-repeat : ∀ n (a : A) → lookup n (repeat a) ≡ a |
| 70 | +lookup-repeat zero a = P.refl |
| 71 | +lookup-repeat (suc n) a = lookup-repeat n a |
| 72 | + |
| 73 | +splitAt-repeat : ∀ n (a : A) → splitAt n (repeat a) ≡ (Vec.replicate a , repeat a) |
| 74 | +splitAt-repeat zero a = P.refl |
| 75 | +splitAt-repeat (suc n) a = cong (Prod.map₁ (a ∷_)) (splitAt-repeat n a) |
| 76 | + |
| 77 | +take-repeat : ∀ n (a : A) → take n (repeat a) ≡ Vec.replicate a |
| 78 | +take-repeat n a = cong proj₁ (splitAt-repeat n a) |
| 79 | + |
| 80 | +drop-repeat : ∀ n (a : A) → drop n (repeat a) ≡ repeat a |
| 81 | +drop-repeat n a = cong proj₂ (splitAt-repeat n a) |
| 82 | + |
| 83 | +map-repeat : ∀ (f : A → B) a → map f (repeat a) ≈ repeat (f a) |
| 84 | +map-repeat f a .head = P.refl |
| 85 | +map-repeat f a .tail = map-repeat f a |
| 86 | + |
| 87 | +ap-repeat : ∀ (f : A → B) a → ap (repeat f) (repeat a) ≈ repeat (f a) |
| 88 | +ap-repeat f a .head = P.refl |
| 89 | +ap-repeat f a .tail = ap-repeat f a |
| 90 | + |
| 91 | +ap-repeatˡ : ∀ (f : A → B) as → ap (repeat f) as ≈ map f as |
| 92 | +ap-repeatˡ f as .head = P.refl |
| 93 | +ap-repeatˡ f as .tail = ap-repeatˡ f (as .tail) |
| 94 | + |
| 95 | +ap-repeatʳ : ∀ (fs : Stream (A → B)) a → ap fs (repeat a) ≈ map (_$′ a) fs |
| 96 | +ap-repeatʳ fs a .head = P.refl |
| 97 | +ap-repeatʳ fs a .tail = ap-repeatʳ (fs .tail) a |
| 98 | + |
| 99 | +interleave-repeat : (a : A) → interleave (repeat a) (repeat a) ≈ repeat a |
| 100 | +interleave-repeat a .head = P.refl |
| 101 | +interleave-repeat a .tail = interleave-repeat a |
| 102 | + |
| 103 | +zipWith-repeat : ∀ (f : A → B → C) a b → |
| 104 | + zipWith f (repeat a) (repeat b) ≈ repeat (f a b) |
| 105 | +zipWith-repeat f a b .head = P.refl |
| 106 | +zipWith-repeat f a b .tail = zipWith-repeat f a b |
| 107 | + |
| 108 | +chunksOf-repeat : ∀ n (a : A) → chunksOf n (repeat a) ≈ repeat (Vec.replicate a) |
| 109 | +chunksOf-repeat n a = begin go where |
| 110 | + |
| 111 | + open ≈-Reasoning |
| 112 | + |
| 113 | + go : chunksOf n (repeat a) ≈∞ repeat (Vec.replicate a) |
| 114 | + go .head = take-repeat n a |
| 115 | + go .tail = |
| 116 | + chunksOf n (drop n (repeat a)) ≡⟨ P.cong (chunksOf n) (drop-repeat n a) ⟩ |
| 117 | + chunksOf n (repeat a) ↺⟨ go ⟩ |
| 118 | + repeat (Vec.replicate a) ∎ |
| 119 | + |
| 120 | +------------------------------------------------------------------------ |
| 121 | +-- Properties of map |
| 122 | + |
| 123 | +map-const : (a : A) (bs : Stream B) → map (const a) bs ≈ repeat a |
| 124 | +map-const a bs .head = P.refl |
| 125 | +map-const a bs .tail = map-const a (bs .tail) |
| 126 | + |
| 127 | +map-identity : (as : Stream A) → map id as ≈ as |
| 128 | +map-identity as .head = P.refl |
| 129 | +map-identity as .tail = map-identity (as .tail) |
| 130 | + |
| 131 | +map-fusion : ∀ (g : B → C) (f : A → B) as → map g (map f as) ≈ map (g ∘′ f) as |
| 132 | +map-fusion g f as .head = P.refl |
| 133 | +map-fusion g f as .tail = map-fusion g f (as .tail) |
| 134 | + |
| 135 | +map-unfold : ∀ (g : B → C) (f : A → A × B) a → |
| 136 | + map g (unfold f a) ≈ unfold (Prod.map₂ g ∘′ f) a |
| 137 | +map-unfold g f a .head = P.refl |
| 138 | +map-unfold g f a .tail = map-unfold g f (proj₁ (f a)) |
| 139 | + |
| 140 | +map-drop : ∀ (f : A → B) n as → map f (drop n as) ≡ drop n (map f as) |
| 141 | +map-drop f zero as = P.refl |
| 142 | +map-drop f (suc n) as = map-drop f n (as .tail) |
| 143 | + |
| 144 | +map-zipWith : ∀ (g : C → D) (f : A → B → C) as bs → |
| 145 | + map g (zipWith f as bs) ≈ zipWith (g ∘₂′ f) as bs |
| 146 | +map-zipWith g f as bs .head = P.refl |
| 147 | +map-zipWith g f as bs .tail = map-zipWith g f (as .tail) (bs .tail) |
| 148 | + |
| 149 | +map-interleave : ∀ (f : A → B) as bs → |
| 150 | + map f (interleave as bs) ≈ interleave (map f as) (map f bs) |
| 151 | +map-interleave f as bs .head = P.refl |
| 152 | +map-interleave f as bs .tail = map-interleave f bs (as .tail) |
| 153 | + |
| 154 | +map-cycle : ∀ (f : A → B) as → map f (cycle as) ≈ cycle (List⁺.map f as) |
| 155 | +map-cycle f (a ∷ as) = go [] where |
| 156 | + |
| 157 | + open Cycle |
| 158 | + go : ∀ acc → map f (cycleAux a as acc) ≈ cycleAux (f a) (List.map f as) (List.map f acc) |
| 159 | + go [] .head = P.refl |
| 160 | + go [] .tail = go as |
| 161 | + go (x ∷ xs) .head = P.refl |
| 162 | + go (x ∷ xs) .tail = go xs |
| 163 | + |
| 164 | +------------------------------------------------------------------------ |
| 165 | +-- Properties of lookup |
| 166 | + |
| 167 | +lookup-drop : ∀ m n (as : Stream A) → lookup n (drop m as) ≡ lookup (m + n) as |
| 168 | +lookup-drop zero n as = P.refl |
| 169 | +lookup-drop (suc m) n as = lookup-drop m n (as .tail) |
| 170 | + |
| 171 | +lookup-map : ∀ n (f : A → B) as → lookup n (map f as) ≡ f (lookup n as) |
| 172 | +lookup-map zero f as = P.refl |
| 173 | +lookup-map (suc n) f as = lookup-map n f (as . tail) |
| 174 | + |
| 175 | +lookup-iterate : ∀ n f (x : A) → lookup n (iterate f x) ≡ ℕ.iterate f x n |
| 176 | +lookup-iterate zero f x = P.refl |
| 177 | +lookup-iterate (suc n) f x = lookup-iterate n f (f x) |
| 178 | + |
| 179 | +lookup-zipWith : ∀ n (f : A → B → C) as bs → |
| 180 | + lookup n (zipWith f as bs) ≡ f (lookup n as) (lookup n bs) |
| 181 | +lookup-zipWith zero f as bs = P.refl |
| 182 | +lookup-zipWith (suc n) f as bs = lookup-zipWith n f (as .tail) (bs .tail) |
| 183 | + |
| 184 | +lookup-unfold : ∀ n (f : A → A × B) a → |
| 185 | + lookup n (unfold f a) ≡ proj₂ (f (ℕ.iterate (proj₁ ∘′ f) a n)) |
| 186 | +lookup-unfold zero f a = P.refl |
| 187 | +lookup-unfold (suc n) f a = lookup-unfold n f (proj₁ (f a)) |
| 188 | + |
| 189 | +lookup-tabulate : ∀ n (f : ℕ → A) → lookup n (tabulate f) ≡ f n |
| 190 | +lookup-tabulate zero f = P.refl |
| 191 | +lookup-tabulate (suc n) f = lookup-tabulate n (f ∘′ suc) |
| 192 | + |
| 193 | +lookup-tails : ∀ n (as : Stream A) → lookup n (tails as) ≈ ℕ.iterate tail as n |
| 194 | +lookup-tails zero as = B.refl |
| 195 | +lookup-tails (suc n) as = lookup-tails n (as .tail) |
| 196 | + |
| 197 | +lookup-evens : ∀ n (as : Stream A) → lookup n (evens as) ≡ lookup (n * 2) as |
| 198 | +lookup-evens zero as = P.refl |
| 199 | +lookup-evens (suc n) as = lookup-evens n (as .tail .tail) |
| 200 | + |
| 201 | +lookup-odds : ∀ n (as : Stream A) → lookup n (odds as) ≡ lookup (suc (n * 2)) as |
| 202 | +lookup-odds zero as = P.refl |
| 203 | +lookup-odds (suc n) as = lookup-odds n (as .tail .tail) |
| 204 | + |
| 205 | +lookup-interleave-even : ∀ n (as bs : Stream A) → |
| 206 | + lookup (n * 2) (interleave as bs) ≡ lookup n as |
| 207 | +lookup-interleave-even zero as bs = P.refl |
| 208 | +lookup-interleave-even (suc n) as bs = lookup-interleave-even n (as .tail) (bs .tail) |
| 209 | + |
| 210 | +lookup-interleave-odd : ∀ n (as bs : Stream A) → |
| 211 | + lookup (suc (n * 2)) (interleave as bs) ≡ lookup n bs |
| 212 | +lookup-interleave-odd zero as bs = P.refl |
| 213 | +lookup-interleave-odd (suc n) as bs = lookup-interleave-odd n (as .tail) (bs .tail) |
| 214 | + |
| 215 | +------------------------------------------------------------------------ |
| 216 | +-- Properties of take |
| 217 | + |
| 218 | +take-iterate : ∀ n f (x : A) → take n (iterate f x) ≡ Vec.iterate f x |
| 219 | +take-iterate zero f x = P.refl |
| 220 | +take-iterate (suc n) f x = cong (x ∷_) (take-iterate n f (f x)) |
| 221 | + |
| 222 | +take-zipWith : ∀ n (f : A → B → C) as bs → |
| 223 | + take n (zipWith f as bs) ≡ Vec.zipWith f (take n as) (take n bs) |
| 224 | +take-zipWith zero f as bs = P.refl |
| 225 | +take-zipWith (suc n) f as bs = |
| 226 | + cong (f (as .head) (bs .head) ∷_) (take-zipWith n f (as .tail) (bs . tail)) |
| 227 | + |
| 228 | +------------------------------------------------------------------------ |
| 229 | +-- Properties of drop |
| 230 | + |
| 231 | +drop-fusion : ∀ m n (as : Stream A) → drop n (drop m as) ≡ drop (m + n) as |
| 232 | +drop-fusion zero n as = P.refl |
| 233 | +drop-fusion (suc m) n as = drop-fusion m n (as .tail) |
| 234 | + |
| 235 | +drop-zipWith : ∀ n (f : A → B → C) as bs → |
| 236 | + drop n (zipWith f as bs) ≡ zipWith f (drop n as) (drop n bs) |
| 237 | +drop-zipWith zero f as bs = P.refl |
| 238 | +drop-zipWith (suc n) f as bs = drop-zipWith n f (as .tail) (bs .tail) |
| 239 | + |
| 240 | +drop-ap : ∀ n (fs : Stream (A → B)) as → |
| 241 | + drop n (ap fs as) ≡ ap (drop n fs) (drop n as) |
| 242 | +drop-ap zero fs as = P.refl |
| 243 | +drop-ap (suc n) fs as = drop-ap n (fs .tail) (as .tail) |
| 244 | + |
| 245 | +drop-iterate : ∀ n f (x : A) → drop n (iterate f x) ≡ iterate f (ℕ.iterate f x n) |
| 246 | +drop-iterate zero f x = P.refl |
| 247 | +drop-iterate (suc n) f x = drop-iterate n f (f x) |
| 248 | + |
| 249 | +------------------------------------------------------------------------ |
| 250 | +-- Properties of zipWith |
| 251 | + |
| 252 | +zipWith-defn : ∀ (f : A → B → C) as bs → |
| 253 | + zipWith f as bs ≈ (repeat f ⟨ ap ⟩ as ⟨ ap ⟩ bs) |
| 254 | +zipWith-defn f as bs .head = P.refl |
| 255 | +zipWith-defn f as bs .tail = zipWith-defn f (as .tail) (bs .tail) |
| 256 | + |
| 257 | +zipWith-const : (as : Stream A) (bs : Stream B) → |
| 258 | + zipWith const as bs ≈ as |
| 259 | +zipWith-const as bs .head = P.refl |
| 260 | +zipWith-const as bs .tail = zipWith-const (as .tail) (bs .tail) |
| 261 | + |
| 262 | +zipWith-flip : ∀ (f : A → B → C) as bs → |
| 263 | + zipWith (flip f) as bs ≈ zipWith f bs as |
| 264 | +zipWith-flip f as bs .head = P.refl |
| 265 | +zipWith-flip f as bs .tail = zipWith-flip f (as .tail) (bs. tail) |
| 266 | + |
| 267 | +------------------------------------------------------------------------ |
| 268 | +-- Properties of interleave |
| 269 | + |
| 270 | +interleave-evens-odds : (as : Stream A) → interleave (evens as) (odds as) ≈ as |
| 271 | +interleave-evens-odds as .head = P.refl |
| 272 | +interleave-evens-odds as .tail .head = P.refl |
| 273 | +interleave-evens-odds as .tail .tail = interleave-evens-odds (as .tail .tail) |
0 commit comments