-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlangmuir_diagnostics.py
296 lines (269 loc) · 9.36 KB
/
langmuir_diagnostics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
# -*- coding: utf-8 -*-
"""
Created on Wed Dec 18 00:21:38 2019
@author: Chatchai
"""
#%%
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from statsmodels.nonparametric.smoothers_lowess import lowess
import scipy as sp
#%% import and clean
iv = pd.read_csv('./data/exIV.csv')
#avg the i of the same v
iv = iv.groupby('V(V)').mean().reset_index()
#%%
def plot_2d_df(xy,xfactor = 1,yfactor = 1,scale = False):
#x_max = xy.iloc[:,0].max()
#x_min = xy.iloc[:,0].min()
y_max = xy.iloc[:,1].max()
y_min = xy.iloc[:,1].min()
#xscale = x_max - x_min
yscale = y_max - y_min
if scale:
#xfactor = 1/xscale
yfactor = 1/yscale
plt.plot(xy.iloc[:,0].to_numpy()*xfactor,xy.iloc[:,1].to_numpy()*yfactor)
def butter_worth_smooth(a,n):
l = len(a)-n
inter = np.zeros(l)
for i in range(l):
inter[i] = np.sum(a[i:i+n])/n
return inter
def lowess_smooth(xy,frac = 0.1):
xy_np = xy.to_numpy()
xy_np = lowess(xy_np[:,1],xy_np[:,0],frac)
return xy_np
def smoothxy(xy, **kwargs):
alg = kwargs.get('alg', 'bw')
if alg == 'bw':
n = kwargs.get('n', 1)
cols = xy.columns
i = []
for col in cols:
a = xy[col].to_numpy()
i.append(butter_worth_smooth(a,n))
i = np.array(i).T
i = pd.DataFrame(i)
return i.dropna()
elif alg == 'lowess':
frac = kwargs.get('frac', 0.05)
i = lowess_smooth(xy, frac)
return pd.DataFrame(i)
# floating potential
def get_floating_potential(iv):
# iv is the pandas data frame with column = ['V(V)', 'I(A)']
vf = np.zeros([2,2])
vf[0,:] = iv[iv.iloc[:,1] < 0].tail(1).to_numpy()
vf[1,:] = iv[iv.iloc[:,1] > 0].head(1).to_numpy()
return (vf[0,0]-vf[1,0])/(vf[0,1]-vf[1,1])*(-vf[0,1])+vf[0,0]
def avg_differential(xy):
x = xy.iloc[:,0].to_numpy()
y = xy.iloc[:,1].to_numpy()
dx = np.diff(x)
dy = np.diff(y)
dyx = dy/dx
dyx = np.array([x[:len(x)-1],dyx]).T
return pd.DataFrame(dyx)
def smoothening_effect(xy, **kwargs):
sw = kwargs.get('alg', None)
if sw == None:
plt.title('not smoothen')
i = xy
elif sw == 'bw':
nn = kwargs.get('n', 2)
loop = kwargs.get('iteration', 1)
plt.title('butterworth smoothen iv n=%d consecutively for %d times'%(nn,loop))
i = smoothxy(xy, alg = sw, n = nn)
for l in range(loop-1):
i = smoothxy(i,alg = sw, n= nn)
print(l)
elif sw == 'lowess':
fracc = kwargs.get('frac',0.05)
plt.title('lowess smoothen iv frac=%.2f'%fracc)
i = smoothxy(xy, alg = sw, frac = fracc)
#plot
plot_2d_df(i, scale =True)
dyx = avg_differential(i)
plot_2d_df(dyx, scale = True)
ddyx = avg_differential(dyx)
plot_2d_df(ddyx, scale = True)
def get_scale(xy):
x_max = xy.iloc[:,0].max()
x_min = xy.iloc[:,0].min()
y_max = xy.iloc[:,1].max()
y_min = xy.iloc[:,1].min()
xscale = x_max - x_min
yscale = y_max - y_min
return (xscale , yscale)
#%% derivative explorations
plt.figure()
#plt.title('not smooth')
smoothening_effect(iv)
#%%
plt.figure()
#plt.title('smoothen lowess frac = 0.05')
smoothening_effect(iv, alg = 'lowess', frac = 0.05)
#%%
plt.figure()
#plt.title('smoothen bw frac = 0.05')
smoothening_effect(iv, alg = 'bw', n = 10, iteration = 3)
#%% presmoothening
for i in range(3):
iv = smoothxy(iv, alg = 'bw', n= 10)
ivxs, ivys = get_scale(iv)
#%% algorithm 1
def classical_analysis(iv,prober,probel,Z,plot = True):
'''
determine the regions separators
# first point
# determined by second ddiv < 1e-3
# second point
# determined by the maximum of div
the first region used for determining the Ii0
the middle region used for determining the temperatures and Ie0
the vp must be determined first before determine Ie0
the vp is the intersection of fitted graph between region 2 and 3
electron density
ie0 = n*e^1.5*Ap(1/4)(8*(k*Te/e)/pi/me)^0.5
ne = ie0*(pi/me/8*(k*Te/e))^0.5 /(e^1.5 *Ap(1/4))
ii0 = -0.61*e^1.5*Ap*((k*Te/e)/Z*mi)^0.5
ni = ii0*(Z*mp/(k*Te/e))^0.5/(-0.61*e^1.5*Ap)
'''
# constants
mp = 1.67262158e-27 #SI kg
me = 9.10938188e-31 #SI kg
e = 1.60217733e-19 #SI C
# determining the region separators
div = avg_differential(iv)
ddiv = avg_differential(div)
iv1 = ddiv[0][ddiv[1]/ivys-1e-2 > 0].head(1).index.values
iv2 = ddiv[0][ddiv[1]==ddiv[1].max()].index.values
iv1 = int(iv1)+1
iv2 = int(iv2)+1
# region separator obtained
# fit the linear to the first region
# prepare data
v = iv.iloc[:,0].to_numpy()
i = iv.iloc[:,1].to_numpy()
a = np.vstack((v[:iv1],np.ones(iv1)))
# fit the data and get the first region parameters
delta1, ii0 = np.linalg.lstsq(a.T,i[:iv1],rcond=None)[0]
# the fitted linear
ii = delta1*v + ii0
# inspection
# fit the exponetial to the second region
# prepare data
ie = i - ii
log_ie = np.log(ie)
offset = 0
a = np.vstack((v[iv1+offset:iv2],np.ones(len(v[iv1+offset:iv2]))))
# fit the data and get the second region parameters
Teinverse, c1 = np.linalg.lstsq(a.T,log_ie[iv1+offset:iv2],rcond=None)[0]
# get the fitted curves
#log_iefit = Teinverse*v + c1
iefit = np.exp(Teinverse*v + c1)
# fit the linear to the third region
#a = np.vstack( (v[iv2:], np.ones(len(v[iv2:])) ) )
#delta2, c2 = np.linalg.lstsq(a.T,ie[iv2:],rcond=None)[0]
#iesat = delta2*v + c2
# poly fit the third region
p = np.polyfit(ie[iv2+10:],v[iv2+10:],deg=2)
ie0 = p[1]/p[0]/2
vp = p[2]-ie0**2/p[0]
vesat = p[0]*(ie**2)+ p[1]*ie +p[2]
#plt.plot(v[iv2:],ie[iv2:])
# parameters
Te = 1/Teinverse # eV
vf = get_floating_potential(iv) # V
Ap = 2*np.pi*prober*probel + 2*np.pi*prober**2 # m-2
ne = ie0*4/(Ap*e**1.5)*(np.pi*me/8/Te)**0.5 # m-3
ni = ii0*(Z*mp/Te)**0.5/(-0.61*e**1.5*Ap) # m-3
# inspection plot and print processed values
if plot:
plt.plot(v,i*1e6)
plt.plot(v[:iv1],ii[:iv1]*1e6)
plt.plot(v[iv1:iv2],(iefit[iv1:iv2]+ii[iv1:iv2])*1e6)
plt.plot(vesat[iv2-10:],(ie[iv2-10:]+ii[iv2-10:])*1e6)
plt.ylabel('I (uA)')
plt.xlabel('V (V)')
plt.title('fitted model')
plt.grid()
print('floating potential = %.3f V'%vf)
print('plasma potential = %.3f V'%vp)
print('ion saturated current = %.3f uA'%(abs(ii0)*1e6))
print('electron saturate current = %.3f uA'%(abs(ie0)*1e6))
print('electron temperature = %.3f eV'%Te)
print('electron density = %.3E cm-3'%(ne*1e-6))
print('ion density = %.3E cm-3'%(ni*1e-6))
return Te,ne,ni,ii0,ie0,vp,vf
#%% algorithm 2
def nonlinear_analysis(iv,prober,probel,Z,plot = True):
'''
determine the regions separators
# first point
# determined by second ddiv < 1e-3
# second point
# determined by the maximum of div
the first region used for determining the Ii0
the middle region used for determining the temperatures and Ie0
the vp must be determined first before determine Ie0
the vp is the intersection of fitted graph between region 2 and 3
electron density
ie0 = n*e^1.5*Ap(1/4)(8*(k*Te/e)/pi/me)^0.5
ne = ie0*(pi/me/8*(k*Te/e))^0.5 /(e^1.5 *Ap(1/4))
ii0 = -0.61*e^1.5*Ap*((k*Te/e)/Z*mi)^0.5
ni = ii0*(Z*mp/(k*Te/e))^0.5/(-0.61*e^1.5*Ap)
'''
# constants
mp = 1.67262158e-27 #SI kg
me = 9.10938188e-31 #SI kg
e = 1.60217733e-19 #SI C
# determining the region separators
div = avg_differential(iv)
ddiv = avg_differential(div)
iv1 = ddiv[0][ddiv[1]/ivys-1e-2 > 0].head(1).index.values
iv2 = ddiv[0][ddiv[1]==ddiv[1].max()].index.values
iv1 = int(iv1)+1
iv2 = int(iv2)+1
# prepare data
v = iv.iloc[:,0].to_numpy()
i = iv.iloc[:,1].to_numpy()
def fit_function1(x,v):
ii = x[3]+x[4]*v
# v < vp
i1 = x[0]*np.exp((v[v<x[1]]-x[1])/x[2])
# v > vp
i2 = x[5]*np.sqrt(v[v>=x[1]]-x[1]-x[6])+x[0]-x[7]
i = np.hstack((i1,i2)) + ii
return i
def fit_function2(x,v):
# v < vp
return x[0]*np.exp((v-x[1])/x[2])+x[3]+x[4]*v
def ie_residue1(x):
return i-fit_function1(x,v)
def ie_residue2(x):
return i[:iv2]-fit_function2(x,v[:iv2])
Te, ne, ni, ii0, ie0, vp, vf = classical_analysis(iv,prober,probel,Z,plot=False)
x1 =[ie0,vp,Te,ii0,0,1e-3,0,0]
x2 =[ie0,vp,Te,ii0,0]
residue = sp.optimize.least_squares(ie_residue2,x2)
# parameters
ie0 = residue.x[0]
vp = residue.x[1]
Te = residue.x[2]
ii0 = residue.x[3]
Ap = 2*np.pi*prober*probel + 2*np.pi*prober**2 # m-2
ne = ie0*4/(Ap*e**1.5)*(np.pi*me/8/Te)**0.5 # m-3
ni = ii0*(Z*mp/Te)**0.5/(-0.61*e**1.5*Ap) # m-3
if plot:
plt.plot(v,i)
plt.plot(v[:iv2],fit_function2(residue.x,v[:iv2]))
print('floating potential = %.3f V'%vf)
print('plasma potential = %.3f V'%vp)
print('ion saturated current = %.3f uA'%(abs(ii0)*1e6))
print('electron saturate current = %.3f uA'%(abs(ie0)*1e6))
print('electron temperature = %.3f eV'%Te)
print('electron density = %.3E cm-3'%(ne*1e-6))
print('ion density = %.3E cm-3'%(ni*1e-6))