-
Notifications
You must be signed in to change notification settings - Fork 359
/
Copy pathvehicle_detection_main.py
268 lines (229 loc) · 10.1 KB
/
vehicle_detection_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
#!/usr/bin/python
# -*- coding: utf-8 -*-
# ----------------------------------------------
# --- Author : Ahmet Ozlu
# --- Mail : [email protected]
# --- Date : 27th January 2018
# ----------------------------------------------
#############################################################################################
# command to run the program and show the output: python3 vehicle_detection_main.py imshow #
# command to run the program and save the output: python3 vehicle_detection_main.py imwrite #
#############################################################################################
# Imports
import numpy as np
import os
import six.moves.urllib as urllib
import sys
import tarfile
import tensorflow as tf
import zipfile
import cv2
import numpy as np
import csv
import time
from packaging import version
from collections import defaultdict
from io import StringIO
from PIL import Image
# Object detection imports
from utils import label_map_util
from utils import visualization_utils as vis_util
# initialize .csv
with open('traffic_measurement.csv', 'w') as f:
writer = csv.writer(f)
csv_line = \
'Vehicle Type/Size, Vehicle Color, Vehicle Movement Direction, Vehicle Speed (km/h)'
writer.writerows([csv_line.split(',')])
# input video
source_video = 'input_video.mp4'
cap = cv2.VideoCapture(source_video)
# Variables
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
fps = int(cap.get(cv2.CAP_PROP_FPS))
total_passed_vehicle = 0 # using it to count vehicles
# By default I use an "SSD with Mobilenet" model here. See the detection model zoo (https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md) for a list of other models that can be run out-of-the-box with varying speeds and accuracies.
# What model to download.
MODEL_NAME = 'ssd_mobilenet_v1_coco_2018_01_28'
MODEL_FILE = MODEL_NAME + '.tar.gz'
DOWNLOAD_BASE = \
'http://download.tensorflow.org/models/object_detection/'
# Path to frozen detection graph. This is the actual model that is used for the object detection.
PATH_TO_CKPT = MODEL_NAME + '/frozen_inference_graph.pb'
# List of the strings that is used to add correct label for each box.
PATH_TO_LABELS = os.path.join('data', 'mscoco_label_map.pbtxt')
NUM_CLASSES = 90
# Download Model
# uncomment if you have not download the model yet
# Load a (frozen) Tensorflow model into memory.
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
#od_graph_def = tf.compat.v1.GraphDef() # use this line to run it with TensorFlow version 2.x
#with tf.compat.v2.io.gfile.GFile(PATH_TO_CKPT, 'rb') as fid: # use this line to run it with TensorFlow version 2.x
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
# Loading label map
# Label maps map indices to category names, so that when our convolution network predicts 5, we know that this corresponds to airplane. Here I use internal utility functions, but anything that returns a dictionary mapping integers to appropriate string labels would be fine
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map,
max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)
# Helper code
def load_image_into_numpy_array(image):
(im_width, im_height) = image.size
return np.array(image.getdata()).reshape((im_height, im_width,
3)).astype(np.uint8)
# Detection
def object_detection_function(command):
total_passed_vehicle = 0
speed = 'waiting...'
direction = 'waiting...'
size = 'waiting...'
color = 'waiting...'
if(command=="imwrite"):
fourcc = cv2.VideoWriter_fourcc(*'XVID')
output_movie = cv2.VideoWriter(source_video.split(".")[0]+'_output.avi', fourcc, fps, (width, height))
with detection_graph.as_default():
with tf.Session(graph=detection_graph) as sess:
#with tf.compat.v1.Session(graph=detection_graph) as sess: # use this line to run it with TensorFlow version 2.x
# Definite input and output Tensors for detection_graph
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
# Each box represents a part of the image where a particular object was detected.
detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
# Each score represent how level of confidence for each of the objects.
# Score is shown on the result image, together with the class label.
detection_scores = detection_graph.get_tensor_by_name('detection_scores:0')
detection_classes = detection_graph.get_tensor_by_name('detection_classes:0')
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
# for all the frames that are extracted from input video
while cap.isOpened():
(ret, frame) = cap.read()
if not ret:
print ('end of the video file...')
break
input_frame = frame
# Expand dimensions since the model expects images to have shape: [1, None, None, 3]
image_np_expanded = np.expand_dims(input_frame, axis=0)
# Actual detection.
(boxes, scores, classes, num) = \
sess.run([detection_boxes, detection_scores,
detection_classes, num_detections],
feed_dict={image_tensor: image_np_expanded})
# Visualization of the results of a detection.
(counter, csv_line) = \
vis_util.visualize_boxes_and_labels_on_image_array(
cap.get(1),
input_frame,
np.squeeze(boxes),
np.squeeze(classes).astype(np.int32),
np.squeeze(scores),
category_index,
use_normalized_coordinates=True,
line_thickness=4,
)
total_passed_vehicle = total_passed_vehicle + counter
# insert information text to video frame
font = cv2.FONT_HERSHEY_SIMPLEX
cv2.putText(
input_frame,
'Detected Vehicles: ' + str(total_passed_vehicle),
(10, 35),
font,
0.8,
(0, 0xFF, 0xFF),
2,
cv2.FONT_HERSHEY_SIMPLEX,
)
# when the vehicle passed over line and counted, make the color of ROI line green
if counter == 1:
cv2.line(input_frame, (0, 200), (640, 200), (0, 0xFF, 0), 5)
else:
cv2.line(input_frame, (0, 200), (640, 200), (0, 0, 0xFF), 5)
# insert information text to video frame
cv2.rectangle(input_frame, (10, 275), (230, 337), (180, 132, 109), -1)
cv2.putText(
input_frame,
'ROI Line',
(545, 190),
font,
0.6,
(0, 0, 0xFF),
2,
cv2.LINE_AA,
)
cv2.putText(
input_frame,
'LAST PASSED VEHICLE INFO',
(11, 290),
font,
0.5,
(0xFF, 0xFF, 0xFF),
1,
cv2.FONT_HERSHEY_SIMPLEX,
)
cv2.putText(
input_frame,
'-Movement Direction: ' + direction,
(14, 302),
font,
0.4,
(0xFF, 0xFF, 0xFF),
1,
cv2.FONT_HERSHEY_COMPLEX_SMALL,
)
cv2.putText(
input_frame,
'-Speed(km/h): ' + str(speed).split(".")[0],
(14, 312),
font,
0.4,
(0xFF, 0xFF, 0xFF),
1,
cv2.FONT_HERSHEY_COMPLEX_SMALL,
)
cv2.putText(
input_frame,
'-Color: ' + color,
(14, 322),
font,
0.4,
(0xFF, 0xFF, 0xFF),
1,
cv2.FONT_HERSHEY_COMPLEX_SMALL,
)
cv2.putText(
input_frame,
'-Vehicle Size/Type: ' + size,
(14, 332),
font,
0.4,
(0xFF, 0xFF, 0xFF),
1,
cv2.FONT_HERSHEY_COMPLEX_SMALL,
)
if(command=="imshow"):
cv2.imshow('vehicle detection', input_frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
elif(command=="imwrite"):
output_movie.write(input_frame)
print("writing frame...")
if csv_line != 'not_available':
with open('traffic_measurement.csv', 'a') as f:
writer = csv.writer(f)
(size, color, direction, speed) = \
csv_line.split(',')
writer.writerows([csv_line.split(',')])
cap.release()
cv2.destroyAllWindows()
import argparse
# Parse command line arguments
parser = argparse.ArgumentParser(description='Vehicle Detection TensorFlow.')
parser.add_argument("command",
metavar="<command>",
help="'imshow' or 'imwrite'")
args = parser.parse_args()
object_detection_function(args.command)