-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSolution11.h
83 lines (67 loc) · 2 KB
/
Solution11.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
#pragma once
/*
* 11. Container With Most Water
* You are given an integer array height of length n. There are n vertical lines drawn such that the two endpoints of the ith line are (i, 0) and (i, height[i]).
Find two lines that together with the x-axis form a container, such that the container contains the most water.
Return the maximum amount of water a container can store.
Notice that you may not slant the container.
Example 1:
Input: height = [1,8,6,2,5,4,8,3,7]
Output: 49
Explanation: The above vertical lines are represented by array [1,8,6,2,5,4,8,3,7]. In this case, the max area of water (blue section) the container can contain is 49.
Example 2:
Input: height = [1,1]
Output: 1
Constraints:
n == height.length
2 <= n <= 105
0 <= height[i] <= 104
*/
#include<vector>
using std::vector;
class Solution11 {
public:
int maxArea(vector<int>& height) {
int sz = (int)height.size();
if (sz < 2) {
return 0;
}
int maxArea = 0;
int area = 0;
int maxi = 0;
for (int i = 0; i < sz-1; i++) {
if (height[i] < height[maxi]) {
continue;
} else {
maxi = i;
}
int maxj = sz-1;
for (int j = sz-1; j > i; j--) {
if (height[j] < height[maxj]) {
continue;
} else {
maxj = j;
}
area = min(height[j], height[i]) * (j-i);
if (area > maxArea) {
maxArea = area;
}
}
}
return maxArea;
}
int maxArea1(vector<int>& height) {
int ret = 0;
int temp;
for (int i = 0, j = (int)height.size() - 1; i < j;) {
temp = min(height[i], height[j]) * (j - i);
ret = ret > temp ? ret : temp;
if (height[i] > height[j]) {
j--;
} else {
i++;
}
}
return ret;
}
};