-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSolution60.h
75 lines (61 loc) · 1.5 KB
/
Solution60.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
//
// Author: huanglijun
// Date : 2019/7/5
// Desc : 60. Permutation Sequence
//
/*
* The set [1,2,3,...,n] contains a total of n! unique permutations.
By listing and labeling all of the permutations in order, we get the following sequence for n = 3:
"123"
"132"
"213"
"231"
"312"
"321"
Given n and k, return the kth permutation sequence.
Note:
Given n will be between 1 and 9 inclusive.
Given k will be between 1 and n! inclusive.
Example 1:
Input: n = 3, k = 3
Output: "213"
Example 2:
Input: n = 4, k = 9
Output: "2314"
*/
#ifndef TESTCODE_SOLUTION60_H
#define TESTCODE_SOLUTION60_H
string getPermutation(int n, int k) {
int maxCount = 1;
for(int i = 1; i <= n; i++){
maxCount *= n;
}
if(k > maxCount) k %= maxCount;
vector<int> nums;
for(int i = 1; i <= n; i++){
nums.push_back(i);
}
int count = 1;
// fixme: 目前是调用Solution38中的getNextPermutation方法 待优化
while(count < k){
for (int i = n - 1; i >= 0; i--) {
bool flag = false;
for (int j = n - 1; j > i; j--) {
if (nums[j] > nums[i]) {
swap(nums[i], nums[j]);
sort(nums.begin() + i + 1, nums.end());
count++;
flag = true;
break;
}
}
if(flag) break;
}
}
stringstream str;
for(int i=0; i<n; i++){
str<<nums[i];
}
return str.str();
}
#endif //TESTCODE_SOLUTION60_H