Skip to content

Commit 591f7de

Browse files
author
ai-in-pm
committed
Initial commit
0 parents  commit 591f7de

34 files changed

+7760
-0
lines changed

.bolt/config.json

+3
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,3 @@
1+
{
2+
"template": "bolt-vite-react-ts"
3+
}

.bolt/prompt

+8
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,8 @@
1+
For all designs I ask you to make, have them be beautiful, not cookie cutter. Make webpages that are fully featured and worthy for production.
2+
3+
By default, this template supports JSX syntax with Tailwind CSS classes, React hooks, and Lucide React for icons. Do not install other packages for UI themes, icons, etc unless absolutely necessary or I request them.
4+
5+
Use icons from lucide-react for logos.
6+
7+
Use stock photos from unsplash where appropriate, only valid URLs you know exist. Do not download the images, only link to them in image tags.
8+

.gitignore

+24
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,24 @@
1+
# Logs
2+
logs
3+
*.log
4+
npm-debug.log*
5+
yarn-debug.log*
6+
yarn-error.log*
7+
pnpm-debug.log*
8+
lerna-debug.log*
9+
10+
node_modules
11+
dist
12+
dist-ssr
13+
*.local
14+
15+
# Editor directories and files
16+
.vscode/*
17+
!.vscode/extensions.json
18+
.idea
19+
.DS_Store
20+
*.suo
21+
*.ntvs*
22+
*.njsproj
23+
*.sln
24+
*.sw?

README.md

+349
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,349 @@
1+
# Comprehensive Guide for Developing a Small Language Model (SLM)
2+
3+
## Table of Contents
4+
5+
1. [Model Conceptualization](#1-model-conceptualization)
6+
2. [Data Preparation](#2-data-preparation)
7+
3. [Model Implementation](#3-model-implementation)
8+
4. [Training Process](#4-training-process)
9+
5. [Evaluation and Fine-tuning](#5-evaluation-and-fine-tuning)
10+
6. [Multi-modal Capabilities](#6-multi-modal-capabilities)
11+
7. [API Development](#7-api-development)
12+
8. [User Interface](#8-user-interface)
13+
9. [Turing Test Challenge](#9-turing-test-challenge)
14+
10. [Deployment and Scaling](#10-deployment-and-scaling)
15+
11. [Continuous Improvement](#11-continuous-improvement)
16+
12. [Ethical Considerations and Bias Mitigation](#12-ethical-considerations-and-bias-mitigation)
17+
13. [Performance Optimization](#13-performance-optimization)
18+
14. [Robustness and Security](#14-robustness-and-security)
19+
15. [Advanced Capabilities and Evaluation Suite](#15-advanced-capabilities-and-evaluation-suite)
20+
21+
## 1. Model Conceptualization
22+
23+
### 1.1 Choose a unique name for your SLM
24+
25+
For this guide, we'll name our SLM "CompactLM".
26+
27+
### 1.2 Define the model's purpose and target domain
28+
29+
CompactLM is designed for efficient natural language understanding and generation in resource-constrained environments. It targets general-purpose text processing with a focus on conversational AI and text summarization.
30+
31+
### 1.3 Determine the model architecture
32+
33+
We'll use a transformer-based architecture, specifically a compact version of BERT, optimized for smaller size and faster inference.
34+
35+
### 1.4 Outline specific use cases and limitations
36+
37+
Use cases:
38+
- Chatbots for customer service
39+
- Text summarization for mobile devices
40+
- Sentiment analysis for social media monitoring
41+
42+
Limitations:
43+
- Limited context window (512 tokens)
44+
- Reduced accuracy compared to larger models
45+
- Limited multilingual capabilities
46+
47+
### 1.5 Analyze trade-offs
48+
49+
CompactLM prioritizes efficiency and low resource usage over raw performance. It aims to achieve 80% of the performance of larger models while using only 10% of the parameters.
50+
51+
### 1.6 Compare SLMs to larger models
52+
53+
Advantages of CompactLM:
54+
- Faster inference times
55+
- Lower memory footprint
56+
- Easier deployment on edge devices
57+
58+
Challenges:
59+
- Reduced accuracy on complex tasks
60+
- Limited knowledge base
61+
- Potential for more frequent hallucinations
62+
63+
## 2. Data Preparation
64+
65+
### 2.1 Select or create a domain-specific dataset
66+
67+
For this guide, we'll use a combination of publicly available datasets:
68+
- Wikipedia articles for general knowledge
69+
- OpenSubtitles for conversational data
70+
- CNN/Daily Mail dataset for summarization tasks
71+
72+
### 2.2 Preprocess and clean the data
73+
74+
Here's a Python script to preprocess and clean the data:
75+
76+
```python
77+
import pandas as pd
78+
import re
79+
from nltk.tokenize import word_tokenize
80+
from nltk.corpus import stopwords
81+
82+
def clean_text(text):
83+
# Convert to lowercase
84+
text = text.lower()
85+
# Remove special characters and digits
86+
text = re.sub(r'[^a-zA-Z\s]', '', text)
87+
# Tokenize
88+
tokens = word_tokenize(text)
89+
# Remove stopwords
90+
stop_words = set(stopwords.words('english'))
91+
tokens = [token for token in tokens if token not in stop_words]
92+
# Join tokens back into text
93+
return ' '.join(tokens)
94+
95+
def preprocess_dataset(file_path):
96+
df = pd.read_csv(file_path)
97+
df['cleaned_text'] = df['text'].apply(clean_text)
98+
return df
99+
100+
# Usage
101+
preprocessed_data = preprocess_dataset('raw_data.csv')
102+
preprocessed_data.to_csv('preprocessed_data.csv', index=False)
103+
```
104+
105+
### 2.3 Split the data
106+
107+
```python
108+
from sklearn.model_selection import train_test_split
109+
110+
train_data, temp_data = train_test_split(preprocessed_data, test_size=0.3, random_state=42)
111+
val_data, test_data = train_test_split(temp_data, test_size=0.5, random_state=42)
112+
113+
train_data.to_csv('train_data.csv', index=False)
114+
val_data.to_csv('val_data.csv', index=False)
115+
test_data.to_csv('test_data.csv', index=False)
116+
```
117+
118+
### 2.4 Implement data augmentation techniques
119+
120+
```python
121+
import nlpaug.augmenter.word as naw
122+
123+
def augment_data(text):
124+
# Synonym replacement
125+
aug_syn = naw.SynonymAug(aug_p=0.1)
126+
text_syn = aug_syn.augment(text)
127+
128+
# Random insertion
129+
aug_ins = naw.RandomWordAug(action="insert", aug_p=0.1)
130+
text_ins = aug_ins.augment(text_syn)
131+
132+
return text_ins
133+
134+
train_data['augmented_text'] = train_data['cleaned_text'].apply(augment_data)
135+
```
136+
137+
### 2.5 Ensure data diversity and representativeness
138+
139+
Analyze the dataset for diversity:
140+
141+
```python
142+
import matplotlib.pyplot as plt
143+
144+
def plot_data_distribution(data, column, title):
145+
plt.figure(figsize=(10, 6))
146+
data[column].value_counts().plot(kind='bar')
147+
plt.title(title)
148+
plt.xlabel(column)
149+
plt.ylabel('Count')
150+
plt.show()
151+
152+
plot_data_distribution(train_data, 'category', 'Distribution of Categories in Training Data')
153+
```
154+
155+
### 2.6 Address potential biases
156+
157+
Implement a bias detection and mitigation pipeline:
158+
159+
```python
160+
from aif360.datasets import BinaryLabelDataset
161+
from aif360.metrics import BinaryLabelDatasetMetric
162+
163+
def detect_bias(data, protected_attribute, label_column):
164+
dataset = BinaryLabelDataset(df=data,
165+
label_names=[label_column],
166+
protected_attribute_names=[protected_attribute])
167+
metric = BinaryLabelDatasetMetric(dataset,
168+
unprivileged_groups=[{protected_attribute: 0}],
169+
privileged_groups=[{protected_attribute: 1}])
170+
171+
print(f"Disparate Impact: {metric.disparate_impact()}")
172+
print(f"Statistical Parity Difference: {metric.statistical_parity_difference()}")
173+
174+
# Usage
175+
detect_bias(train_data, 'gender', 'sentiment')
176+
```
177+
178+
### 2.7 Implement data versioning and quality control
179+
180+
Use DVC (Data Version Control) for versioning:
181+
182+
```bash
183+
dvc init
184+
dvc add data/
185+
git add data.dvc .gitignore
186+
git commit -m "Add raw data"
187+
dvc push
188+
```
189+
190+
## 3. Model Implementation
191+
192+
### 3.1 Set up the development environment
193+
194+
```bash
195+
python -m venv slm_env
196+
source slm_env/bin/activate
197+
pip install torch transformers datasets
198+
```
199+
200+
### 3.2 Implement the chosen architecture
201+
202+
Here's a simplified implementation of CompactLM using PyTorch and Hugging Face Transformers:
203+
204+
```python
205+
import torch
206+
import torch.nn as nn
207+
from transformers import BertConfig, BertForMaskedLM
208+
209+
class CompactLM(nn.Module):
210+
def __init__(self, vocab_size, hidden_size=256, num_hidden_layers=6, num_attention_heads=4):
211+
super(CompactLM, self).__init__()
212+
self.config = BertConfig(
213+
vocab_size=vocab_size,
214+
hidden_size=hidden_size,
215+
num_hidden_layers=num_hidden_layers,
216+
num_attention_heads=num_attention_heads,
217+
intermediate_size=hidden_size * 4
218+
)
219+
self.model = BertForMaskedLM(self.config)
220+
221+
def forward(self, input_ids, attention_mask=None, labels=None):
222+
return self.model(input_ids, attention_mask=attention_mask, labels=labels)
223+
224+
# Usage
225+
vocab_size = 30522 # Default BERT vocab size
226+
model = CompactLM(vocab_size)
227+
```
228+
229+
### 3.3 Initialize weights and biases
230+
231+
The weights are automatically initialized by the Hugging Face Transformers library. However, you can implement custom initialization if needed:
232+
233+
```python
234+
def init_weights(module):
235+
if isinstance(module, (nn.Linear, nn.Embedding)):
236+
module.weight.data.normal_(mean=0.0, std=0.02)
237+
if isinstance(module, nn.Linear) and module.bias is not None:
238+
module.bias.data.zero_()
239+
240+
model.apply(init_weights)
241+
```
242+
243+
### 3.4 Implement attention mechanisms and positional encoding
244+
245+
These are already implemented in the BERT architecture we're using. For a custom implementation, you could do:
246+
247+
```python
248+
class SelfAttention(nn.Module):
249+
def __init__(self, hidden_size, num_attention_heads):
250+
super(SelfAttention, self).__init__()
251+
self.num_attention_heads = num_attention_heads
252+
self.attention_head_size = hidden_size // num_attention_heads
253+
self.all_head_size = self.num_attention_heads * self.attention_head_size
254+
255+
self.query = nn.Linear(hidden_size, self.all_head_size)
256+
self.key = nn.Linear(hidden_size, self.all_head_size)
257+
self.value = nn.Linear(hidden_size, self.all_head_size)
258+
259+
def transpose_for_scores(self, x):
260+
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
261+
x = x.view(*new_x_shape)
262+
return x.permute(0, 2, 1, 3)
263+
264+
def forward(self, hidden_states, attention_mask=None):
265+
query_layer = self.transpose_for_scores(self.query(hidden_states))
266+
key_layer = self.transpose_for_scores(self.key(hidden_states))
267+
value_layer = self.transpose_for_scores(self.value(hidden_states))
268+
269+
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
270+
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
271+
272+
if attention_mask is not None:
273+
attention_scores = attention_scores + attention_mask
274+
275+
attention_probs = nn.Softmax(dim=-1)(attention_scores)
276+
context_layer = torch.matmul(attention_probs, value_layer)
277+
278+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
279+
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
280+
context_layer = context_layer.view(*new_context_layer_shape)
281+
282+
return context_layer
283+
```
284+
285+
### 3.5 Design custom loss functions
286+
287+
For language modeling tasks, we typically use Cross-Entropy Loss. However, for specific tasks, you might want to implement custom loss functions:
288+
289+
```python
290+
class FocalLoss(nn.Module):
291+
def __init__(self, alpha=1, gamma=2):
292+
super(FocalLoss, self).__init__()
293+
self.alpha = alpha
294+
self.gamma = gamma
295+
296+
def forward(self, inputs, targets):
297+
ce_loss = nn.CrossEntropyLoss(reduction='none')(inputs, targets)
298+
pt = torch.exp(-ce_loss)
299+
focal_loss = self.alpha * (1-pt)**self.gamma * ce_loss
300+
return focal_loss.mean()
301+
302+
# Usage
303+
criterion = FocalLoss()
304+
```
305+
306+
### 3.6 Optimize model size
307+
308+
Implement knowledge distillation:
309+
310+
```python
311+
from transformers import BertForMaskedLM
312+
313+
class DistillationLoss(nn.Module):
314+
def __init__(self, temperature=2.0):
315+
super(DistillationLoss, self).__init__()
316+
self.temperature = temperature
317+
self.kl_div = nn.KLDivLoss(reduction="batchmean")
318+
319+
def forward(self, student_logits, teacher_logits, labels):
320+
soft_targets = nn.functional.softmax(teacher_logits / self.temperature, dim=-1)
321+
soft_prob = nn.functional.log_softmax(student_logits / self.temperature, dim=-1)
322+
distillation_loss = self.kl_div(soft_prob, soft_targets) * (self.temperature ** 2)
323+
324+
student_loss = nn.CrossEntropyLoss()(student_logits, labels)
325+
return 0.5 * (distillation_loss + student_loss)
326+
327+
# Load pre-trained teacher model
328+
teacher_model = BertForMaskedLM.from_pretrained('bert-base-uncased')
329+
student_model = CompactLM(vocab_size)
330+
331+
distillation_criterion = DistillationLoss()
332+
```
333+
334+
### 3.7 Implement efficient tokenization and embedding strategies
335+
336+
Use the Hugging Face Tokenizers library for efficient tokenization:
337+
338+
```python
339+
from transformers import BertTokenizerFast
340+
341+
tokenizer = BertTokenizerFast.from_pretrained('bert-base-uncased')
342+
343+
def tokenize_function(examples):
344+
return tokenizer(examples['text'], padding='max_length', truncation=True, max_length=512)
345+
346+
tokenized_datasets = raw_datasets.map(tokenize_function, batched=True)
347+
```
348+
349+
This completes the first three sections of the guide. The subsequent sections would follow a similar pattern, providing detailed explanations, code snippets, and best practices for each step in the SLM development process.

0 commit comments

Comments
 (0)