-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathrun_pixelnerf_alt.py
384 lines (314 loc) · 14.3 KB
/
run_pixelnerf_alt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
import matplotlib.pyplot as plt
import numpy as np
import torch
from image_encoder import ImageEncoder
from pixelnerf_dataset import PixelNeRFDataset
from torch import nn, optim
class PixelNeRFFCResNet(nn.Module):
def __init__(self):
super().__init__()
# Number of encoding functions for positions. See Section B.1 in the
# Supplementary Materials.
self.L_pos = 6
# Number of encoding functions for viewing directions.
self.L_dir = 0
pos_enc_feats = 3 + 3 * 2 * self.L_pos
dir_enc_feats = 3 + 3 * 2 * self.L_dir
# Set up ResNet MLP. See Section B.1 and Figure 18 in the Supplementary
# Materials.
net_width = 512
self.first_layer = nn.Sequential(
nn.Linear(pos_enc_feats + dir_enc_feats, net_width)
)
self.n_resnet_blocks = 5
z_linears = []
mlps = []
for resnet_block in range(self.n_resnet_blocks):
z_linears.append(nn.Linear(net_width, net_width))
mlps.append(
nn.Sequential(
nn.Linear(net_width, net_width),
nn.ReLU(),
nn.Linear(net_width, net_width),
nn.ReLU(),
)
)
self.z_linears = nn.ModuleList(z_linears)
self.mlps = nn.ModuleList(mlps)
self.final_layer = nn.Linear(net_width, 4)
def forward(self, xs, ds, zs):
xs_encoded = [xs]
for l_pos in range(self.L_pos):
xs_encoded.append(torch.sin(2**l_pos * torch.pi * xs))
xs_encoded.append(torch.cos(2**l_pos * torch.pi * xs))
xs_encoded = torch.cat(xs_encoded, dim=-1)
ds = ds / ds.norm(p=2, dim=-1).unsqueeze(-1)
ds_encoded = [ds]
for l_dir in range(self.L_dir):
ds_encoded.append(torch.sin(2**l_dir * torch.pi * ds))
ds_encoded.append(torch.cos(2**l_dir * torch.pi * ds))
ds_encoded = torch.cat(ds_encoded, dim=-1)
# Use the network to predict colors (c_is) and volume densities (sigma_is) for
# 3D points (xs) along rays given the viewing directions (ds) of the rays
# and the associated input image features (zs). See Section B.1 and Figure 18 in
# the Supplementary Materials and:
# https://github.com/sxyu/pixel-nerf/blob/master/src/model/resnetfc.py.
outputs = self.first_layer(torch.cat([xs_encoded, ds_encoded], dim=-1))
for block_idx in range(self.n_resnet_blocks):
resnet_zs = self.z_linears[block_idx](zs)
outputs = outputs + resnet_zs
outputs = self.mlps[block_idx](outputs) + outputs
outputs = self.final_layer(outputs)
sigma_is = torch.relu(outputs[:, 0])
c_is = torch.sigmoid(outputs[:, 1:])
return {"c_is": c_is, "sigma_is": sigma_is}
class PixelNeRF:
def __init__(self, device, camera_distance, scale):
self.device = device
# See Section B.1 in the Supplementary Materials,
# and: https://github.com/sxyu/pixel-nerf/blob/a5a514224272a91e3ec590f215567032e1f1c260/conf/default.conf#L50,
# and: https://github.com/sxyu/pixel-nerf/blob/a5a514224272a91e3ec590f215567032e1f1c260/src/render/nerf.py#L150.
self.N_c = N_c = 64
self.N_f = 16
self.N_d = 16
self.d_std = 0.01
self.t_n = t_n = 1.0
self.t_f = t_f = 4.0
self.t_i_c_gap = t_i_c_gap = (t_f - t_n) / N_c
self.t_i_c_bin_edges = (t_n + torch.arange(N_c) * t_i_c_gap).to(device)
self.F_c = PixelNeRFFCResNet().to(device)
self.F_f = PixelNeRFFCResNet().to(device)
self.E = ImageEncoder().to(device)
self.camera_distance = camera_distance
self.scale = scale
self.chunk_size = 1024 * 32
def get_coarse_query_points(self, ds, os):
u_is_c = torch.rand(*list(ds.shape[:2]) + [self.N_c]).to(ds)
t_is_c = self.t_i_c_bin_edges + u_is_c * self.t_i_c_gap
r_ts_c = os[..., None, :] + t_is_c[..., :, None] * ds[..., None, :]
return (r_ts_c, t_is_c)
def get_fine_query_points(self, w_is_c, t_is_c, os, ds, r_ts_c):
w_is_c = w_is_c + 1e-5
pdfs = w_is_c / torch.sum(w_is_c, dim=-1, keepdim=True)
cdfs = torch.cumsum(pdfs, dim=-1)
cdfs = torch.cat([torch.zeros_like(cdfs[..., :1]), cdfs[..., :-1]], dim=-1)
us = torch.rand(list(cdfs.shape[:-1]) + [self.N_f]).to(w_is_c)
idxs = torch.searchsorted(cdfs, us, right=True)
t_i_f_bottom_edges = torch.gather(t_is_c, 2, idxs - 1)
idxs_capped = idxs.clone()
max_ind = cdfs.shape[-1]
idxs_capped[idxs_capped == max_ind] = max_ind - 1
t_i_f_top_edges = torch.gather(t_is_c, 2, idxs_capped)
t_i_f_top_edges[idxs == max_ind] = self.t_f
t_i_f_gaps = t_i_f_top_edges - t_i_f_bottom_edges
u_is_f = torch.rand_like(t_i_f_gaps).to(os)
t_is_f = t_i_f_bottom_edges + u_is_f * t_i_f_gaps
# See Section B.1 in the Supplementary Materials and:
# https://github.com/sxyu/pixel-nerf/blob/a5a514224272a91e3ec590f215567032e1f1c260/src/render/nerf.py#L150.
t_is_d = (w_is_c * r_ts_c[..., 2]).sum(dim=-1)
t_is_d = t_is_d.unsqueeze(2).repeat((1, 1, self.N_d))
t_is_d = t_is_d + torch.normal(0, self.d_std, size=t_is_d.shape).to(t_is_d)
t_is_d = torch.clamp(t_is_d, self.t_n, self.t_f)
t_is_f = torch.cat([t_is_c, t_is_f.detach(), t_is_d], dim=-1)
(t_is_f, _) = torch.sort(t_is_f, dim=-1)
r_ts_f = os[..., None, :] + t_is_f[..., :, None] * ds[..., None, :]
return (r_ts_f, t_is_f)
def get_image_features_for_query_points(self, r_ts, W_i):
# Get the projected image coordinates (pi_x_is) for each point along the rays
# (r_ts). This is just geometry. See: http://www.songho.ca/opengl/gl_projectionmatrix.html.
pi_x_is = r_ts[..., :2] / (self.camera_distance - r_ts[..., 2].unsqueeze(-1))
pi_x_is = pi_x_is / self.scale
# PyTorch's grid_sample function assumes (-1, -1) is the left-top pixel, but we want
# (-1, -1) to be the left-bottom pixel, so we negate the y-coordinates.
pi_x_is[..., 1] = -1 * pi_x_is[..., 1]
# PyTorch's grid_sample function expects the grid to have shape
# (N, H_out, W_out, 2).
pi_x_is = pi_x_is.permute(2, 0, 1, 3)
# PyTorch's grid_sample function expects the input to have shape (N, C, H_in, W_in).
W_i = W_i.repeat(pi_x_is.shape[0], 1, 1, 1)
# Get the image features (z_is) associated with the projected image coordinates
# (pi_x_is) from the encoded image features (W_i). See Section 4.2.
z_is = nn.functional.grid_sample(
W_i, pi_x_is, align_corners=True, padding_mode="border"
)
# Convert shape back to match rays.
z_is = z_is.permute(2, 3, 0, 1)
return z_is
def render_radiance_volume(self, r_ts, ds, z_is, F, t_is):
r_ts_flat = r_ts.reshape((-1, 3))
ds_rep = ds.unsqueeze(2).repeat(1, 1, r_ts.shape[-2], 1)
ds_flat = ds_rep.reshape((-1, 3))
z_is_flat = z_is.reshape((ds_flat.shape[0], -1))
c_is = []
sigma_is = []
for chunk_start in range(0, r_ts_flat.shape[0], self.chunk_size):
r_ts_batch = r_ts_flat[chunk_start : chunk_start + self.chunk_size]
ds_batch = ds_flat[chunk_start : chunk_start + self.chunk_size]
w_is_batch = z_is_flat[chunk_start : chunk_start + self.chunk_size]
preds = F(r_ts_batch, ds_batch, w_is_batch)
c_is.append(preds["c_is"])
sigma_is.append(preds["sigma_is"])
c_is = torch.cat(c_is).reshape(r_ts.shape)
sigma_is = torch.cat(sigma_is).reshape(r_ts.shape[:-1])
delta_is = t_is[..., 1:] - t_is[..., :-1]
one_e_10 = torch.Tensor([1e10]).expand(delta_is[..., :1].shape)
delta_is = torch.cat([delta_is, one_e_10.to(delta_is)], dim=-1)
delta_is = delta_is * ds.norm(dim=-1).unsqueeze(-1)
alpha_is = 1.0 - torch.exp(-sigma_is * delta_is)
T_is = torch.cumprod(1.0 - alpha_is + 1e-10, -1)
T_is = torch.roll(T_is, 1, -1)
T_is[..., 0] = 1.0
w_is = T_is * alpha_is
C_rs = (w_is[..., None] * c_is).sum(dim=-2)
return (C_rs, w_is)
def __call__(self, ds, os, source_image):
(r_ts_c, t_is_c) = self.get_coarse_query_points(ds, os)
# Extract feature pyramid from image. See Section 4.1, Section B.1 in the
# Supplementary Materials, and: https://github.com/sxyu/pixel-nerf/blob/master/src/model/encoder.py.
with torch.no_grad():
W_i = self.E(source_image.unsqueeze(0).permute(0, 3, 1, 2).to(self.device))
z_is_c = self.get_image_features_for_query_points(r_ts_c, W_i)
(C_rs_c, w_is_c) = self.render_radiance_volume(
r_ts_c, ds, z_is_c, self.F_c, t_is_c
)
(r_ts_f, t_is_f) = self.get_fine_query_points(w_is_c, t_is_c, os, ds, r_ts_c)
z_is_f = self.get_image_features_for_query_points(r_ts_f, W_i)
(C_rs_f, _) = self.render_radiance_volume(r_ts_f, ds, z_is_f, self.F_f, t_is_f)
return (C_rs_c, C_rs_f)
def load_data():
# Initialize dataset and test object/poses.
data_dir = "data"
# See Section B.2.1 in the Supplementary Materials.
num_iters = 400000
test_obj_idx = 5
test_source_pose_idx = 11
test_target_pose_idx = 33
train_dataset = PixelNeRFDataset(
data_dir, num_iters, test_obj_idx, test_source_pose_idx, test_target_pose_idx
)
return (num_iters, train_dataset)
def set_up_test_data(train_dataset, device):
obj_idx = train_dataset.test_obj_idx
obj = train_dataset.objs[obj_idx]
data_dir = train_dataset.data_dir
obj_dir = f"{data_dir}/{obj}"
z_len = train_dataset.z_len
source_pose_idx = train_dataset.test_source_pose_idx
source_img_f = f"{obj_dir}/{str(source_pose_idx).zfill(z_len)}.npy"
source_image = np.load(source_img_f) / 255
source_pose = train_dataset.poses[obj_idx, source_pose_idx]
source_R = source_pose[:3, :3]
target_pose_idx = train_dataset.test_target_pose_idx
target_img_f = f"{obj_dir}/{str(target_pose_idx).zfill(z_len)}.npy"
target_image = np.load(target_img_f) / 255
target_pose = train_dataset.poses[obj_idx, target_pose_idx]
target_R = target_pose[:3, :3]
R = torch.Tensor(source_R.T @ target_R).to(device)
plt.imshow(source_image)
plt.show()
source_image = torch.Tensor(source_image)
source_image = (
source_image - train_dataset.channel_means
) / train_dataset.channel_stds
plt.imshow(target_image)
plt.show()
target_image = torch.Tensor(target_image).to(device)
return (source_image, R, target_image)
def main():
seed = 9458
torch.manual_seed(seed)
np.random.seed(seed)
device = "cuda:0"
(num_iters, train_dataset) = load_data()
img_size = train_dataset[0][2].shape[0]
pixelnerf = PixelNeRF(device, train_dataset.camera_distance, train_dataset.scale)
# See Section B.2 in the Supplementary Materials.
batch_img_size = 12
n_batch_pix = batch_img_size**2
n_objs = 4
# See Section B.2 in the Supplementary Materials.
lr = 1e-4
train_params = list(pixelnerf.F_c.parameters()) + list(pixelnerf.F_f.parameters())
optimizer = optim.Adam(train_params, lr=lr)
criterion = nn.MSELoss()
(test_source_image, test_R, test_target_image) = set_up_test_data(
train_dataset, device
)
init_o = train_dataset.init_o.to(device)
init_ds = train_dataset.init_ds.to(device)
test_ds = torch.einsum("ij,hwj->hwi", test_R, init_ds)
test_os = (test_R @ init_o).expand(test_ds.shape)
psnrs = []
iternums = []
use_bbox = True
num_bbox_iters = 300000
display_every = 100
pixelnerf.F_c.train()
pixelnerf.F_f.train()
pixelnerf.E.eval()
for i in range(num_iters):
if i == num_bbox_iters:
use_bbox = False
loss = 0
for obj in range(n_objs):
try:
(source_image, R, target_image, bbox) = train_dataset[0]
except ValueError:
continue
R = R.to(device)
ds = torch.einsum("ij,hwj->hwi", R, init_ds)
os = (R @ init_o).expand(ds.shape)
if use_bbox:
pix_rows = np.arange(bbox[0], bbox[2])
pix_cols = np.arange(bbox[1], bbox[3])
else:
pix_rows = np.arange(0, img_size)
pix_cols = np.arange(0, img_size)
pix_row_cols = np.meshgrid(pix_rows, pix_cols, indexing="ij")
pix_row_cols = np.stack(pix_row_cols).transpose(1, 2, 0).reshape(-1, 2)
choices = np.arange(len(pix_row_cols))
try:
selected_pix = np.random.choice(choices, n_batch_pix, False)
except ValueError:
continue
pix_idx_rows = pix_row_cols[selected_pix, 0]
pix_idx_cols = pix_row_cols[selected_pix, 1]
ds_batch = ds[pix_idx_rows, pix_idx_cols].reshape(
batch_img_size, batch_img_size, -1
)
os_batch = os[pix_idx_rows, pix_idx_cols].reshape(
batch_img_size, batch_img_size, -1
)
(C_rs_c, C_rs_f) = pixelnerf(ds_batch, os_batch, source_image)
target_img = target_image.to(device)
target_img_batch = target_img[pix_idx_rows, pix_idx_cols].reshape(
C_rs_c.shape
)
loss += criterion(C_rs_c, target_img_batch)
loss += criterion(C_rs_f, target_img_batch)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if i % display_every == 0:
pixelnerf.F_c.eval()
pixelnerf.F_f.eval()
with torch.no_grad():
(_, C_rs_f) = pixelnerf(test_ds, test_os, test_source_image)
loss = criterion(C_rs_f, test_target_image)
print(f"Loss: {loss.item()}")
psnr = -10.0 * torch.log10(loss)
psnrs.append(psnr.item())
iternums.append(i)
plt.figure(figsize=(10, 4))
plt.subplot(121)
plt.imshow(C_rs_f.detach().cpu().numpy())
plt.title(f"Iteration {i}")
plt.subplot(122)
plt.plot(iternums, psnrs)
plt.title("PSNR")
plt.show()
pixelnerf.F_c.train()
pixelnerf.F_f.train()
print("Done!")
if __name__ == "__main__":
main()