forked from strang3-r/Leetcode75
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBinary_and_Modular_Exponentiation.cpp
110 lines (103 loc) · 3.33 KB
/
Binary_and_Modular_Exponentiation.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
/**
* @file
* @brief C++ Program to find Binary Exponent and Binary Modular Exponent Iteratively and Recursively.
*
* Calculate \f$a^b\f$ in \f$O(\log(b))\f$ by converting \f$b\f$ to a
* binary number. Binary exponentiation is also known as exponentiation by
* squaring. Calculating binary exponent modular m is known as modular exponentiation.
* @note This is a far better approach compared to naive method which
* provide \f$O(b)\f$ operations.
*
* Example:
* </br>10 in base 2 is 1010.
* \f{eqnarray*}{
* 2^{10_d} &=& 2^{1010_b} = 2^8 * 2^2\\
* 2^1 &=& 2\\
* 2^2 &=& (2^1)^2 = 2^2 = 4\\
* 2^4 &=& (2^2)^2 = 4^2 = 16\\
* 2^8 &=& (2^4)^2 = 16^2 = 256\\
* \f}
* Hence to calculate 2^10 we only need to multiply \f$2^8\f$ and \f$2^2\f$
* skipping \f$2^1\f$ and \f$2^4\f$.
*
* Bitwise Operations Used:
* a>>1 => is same as a/2.
* a>>=1 => is same as a = a/2.
* a&1 => is same as a%2. Checks wether number a is odd or not. Results to 1 i.e. True if a is odd and 0 or False otherwise.
*
* Modular Properties
* ( a * a ) % m = ( a%m * a%m ) % m
* Using this property of modular aithmetic we can efficiently calculate (a^b)%m.
*/
#include <iostream>
/// Recursive function to calculate exponent in \f$O(\log(n))\f$ using binary
/// exponent.
long long int binExpo(long long int a, long long int b) {
if (b == 0) {
return 1;
}
long long int res = binExpo(a, b>>1);
if (b&1) { // Same as b%2==1. Result to true if b is odd.
return res * res * a;
} else {
return res * res;
}
}
/// Recursive function to calculate exponent modular m (a^b %m) in \f$O(\log(n))\f$ using
/// binary exponentiation.
long long int binModExpo(long long int a, long long int b, long long int m) {
if (b == 0) {
return 1;
}
long long int res = binExpo(a, b>>1, m) % m;
if (b&1) {
return (res * res * a%m ) % m;
} else {
return (res * res) % m;
}
}
/// Iterative function to calculate exponent in \f$O(\log(n))\f$ using binary
/// exponent.
long long int binExpo_alt(long long int a, long long int b) {
long long int res = 1;
while (b > 0) {
if (b&2) {
res = res * a;
}
a = a * a;
b >>= 1;
}
return res;
}
/// Iterative function to calculate exponent modular m (a^b %m) in \f$O(\log(n))\f$ using
/// binary exponentiation.
long long int binModExpo_alt(long long int a, long long int b, long long int m) {
long long int res = 1;
a %= m ;
while (b > 0) {
if (b&1) {
res = (res * a) % m ;
}
a = (a * a) % m;
b >>= 1 ;
}
return res;
}
/// Main function
int main() {
long long int a, b, m;
/// Give three numbers a, b, m.
std::cin >> a >> b >> m;
if (a == 0 && b == 0) {
std::cout << "Math error" << std::endl;
} else if (b < 0) {
std::cout << "Exponent must be positive !!" << std::endl;
} else if ( m == 0 ) {
std::cout << "m cannot be zero." << std::endl;
} else {
std::cout << "Result of a^b Recursive : " << binExpo(a,b) << std::endl;
std::cout << "Result of a^b%m Recursive : " << binModExpo(a,b,m) << std::endl;
std::cout << "Result of a^b Iterative : " << binExpo_alt(a,b) << std::endl;
std::cout << "Result of a^b%m Iterative : " << binModExpo_alt(a,b,m) << std::endl;
}
}