-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathevaluate.py
727 lines (687 loc) · 40.6 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
import argparse
import sys
import os
import re
import gzip
import math
import time
import random
import json
import numpy as np
from data_classes import Event, Interval, experiment_from_json
from scipy.stats import chi2
from tqdm import tqdm
from typing import *
normal_key = "normal"
rootkit_key = "rootkit"
class Intervals:
def __init__(self, filename, events_dir_name, grouping=None):
self.args = []
self.intervals = {}
self.intervals_time = {}
self.interval_types = []
self.file_date = ""
self.timestamp = ""
self.experiment = None
self.events = []
self.events_per_process = {}
self.dataframe = None
self.event_count = {}
self.filename = filename
experiment = None
with gzip.open(filename, 'r') as file:
json_obj = json.load(file)
experiment = experiment_from_json(json_obj)
self.file_date = filename.replace(events_dir_name + "/", "").replace("experiment", "").replace(".json", "").replace(".gz", "")
self.timestamp = filename[(filename.find("T") + 1):filename.find(".")].replace("_", ":")
processes = {}
for event in experiment.events:
try:
processes[event.pid]
except KeyError:
processes[event.pid] = []
processes[event.pid].append(event)
if grouping == "seq":
# Intervals are measured between neighboring events, independent from their type and enter/return
for pid in processes:
for i in range(len(processes[pid]) - 1):
event_a = processes[pid][i]
event_b = processes[pid][i + 1]
type_name = event_a.probe_point + ":" + event_b.probe_point
try:
self.intervals_time[type_name]
except KeyError:
self.intervals_time[type_name] = []
self.intervals_time[type_name].append(event_b.timestamp - event_a.timestamp)
elif grouping == "fun":
# Intervals are measured between enter and return events of the same type
# Note that events may be dropped when multiple enter events of the same type occur
for pid in processes:
start_events = {}
for event in processes[pid]:
if event.probe_point.endswith("-enter"):
start_events[event.probe_point] = event.timestamp
elif event.probe_point.endswith("-return"):
event_enter = event.probe_point.replace("-return", "-enter")
if event_enter in start_events and start_events[event_enter] is not None:
if event_enter + ":" + event.probe_point not in self.intervals_time:
self.intervals_time[event_enter + ":" + event.probe_point] = []
self.intervals_time[event_enter + ":" + event.probe_point].append(event.timestamp - start_events[event_enter])
start_events[event_enter] = None
else:
print("ERROR: Unknown event ending " + str(event.probe_point))
else:
print("ERROR: Mode " + str(mode) + " is unknown, aborting.")
sys.exit()
for event in experiment.events:
try:
self.event_count[event.probe_point]
except KeyError:
self.event_count[event.probe_point] = 0
self.event_count[event.probe_point] += 1
# Remove events from experiment to avoid that python runs out of RAM
experiment.events = []
self.experiment = experiment
def __fill_events_per_process(self, processes):
events_per_process = {}
for pid, events in processes.items():
events_per_process[pid] = len(events)
return events_per_process
def check_events_per_process(self, processes) -> bool:
events_per_process = self.__fill_events_per_process(processes)
median = np.median(list(events_per_process.values()))
deviation = np.percentile(list(events_per_process.values()), 75) - np.percentile(list(events_per_process.values()), 25)
problem = False
i = 0
for pid, events in events_per_process.items():
i += 1
if np.abs(events - median) > (5 * deviation):
print(f"{i}: PID {pid}'s number of events ({events}) differs from the median ({median}) more than 5x the deviation ({deviation}).")
problem = True
return problem
def sanity_check(self, processes):
problem = self.check_events_per_process(processes)
if problem:
print("#############################################################")
print("THIS DATASET DID NOT PASS THE SANITY CHECK! IT MAY MISS DATA!")
print("#############################################################")
def export_intervals_to_csv(self, out):
for name, interv in self.intervals_time.items():
for cnt, delta in enumerate(interv):
out.write(str(self.filename) + ',' + str(name) + ',' + str(cnt) + ',' + str(delta) + ',' + str(self.experiment.label) + ',' + str(self.experiment.description) + '\n')
def export_all_intervals_to_csv(ivs, mode):
with open('intervals_' + mode + '.csv', 'w+') as out:
out.write('filename,name,id,delta,label,description\n')
for label, ivs_dict in ivs.items():
for description, iv_list in ivs_dict.items():
for iv in iv_list:
iv.export_intervals_to_csv(out)
def export_all_intervals_to_pca(ivs, num_q):
quantiles = np.linspace(0, 1 - 1 / (num_q + 1), (num_q + 1))[1:]
names = set()
for label, ivs_dict in ivs.items():
for description, iv_list in ivs_dict.items():
for iv in iv_list:
names.update(list(iv.intervals_time))
names = list(names)
names.sort()
with open('pca.csv', 'w+') as out:
s = ""
for name in names:
for q in quantiles:
s += name
if num_q > 1:
s += "-" + str(q)
s += ","
out.write('label,description,' + s[:-1] + '\n')
for label, ivs_dict in ivs.items():
for description, iv_list in ivs_dict.items():
for iv in iv_list:
s = ""
for name in names:
if name in iv.intervals_time:
for q in np.quantile(iv.intervals_time[name], quantiles):
s += "," + str(q)
else:
s += ",NA" * len(quantiles)
out.write(label + "," + description + s + "\n")
def get_fone(tp, fn, tn, fp):
# Compute the F1 score based on detected samples
if tp + fp + fn == 0:
return 'inf'
return tp / (tp + 0.5 * (fp + fn))
def compute_results(do_print, name, tp, fn, tn, fp, threshold, det_time):
# Compute metrics and return a dictionary with results
if tp + fn == 0:
tpr = 0 # "inf"
else:
tpr = tp / (tp + fn)
if fp + tn == 0:
fpr = 0 # "inf"
else:
fpr = fp / (fp + tn)
if tn + fp == 0:
tnr = 0 # "inf"
else:
tnr = tn / (tn + fp)
if tp + fp == 0:
p = 0 # "inf"
else:
p = tp / (tp + fp)
fone = get_fone(tp, fn, tn, fp)
acc = (tp + tn) / (tp + tn + fp + fn)
mcc = "inf"
if tp + fp != 0 and tp + fn != 0 and tn + fp != 0 and tn + fn != 0:
mcc = ((tp * tn) - (fp * fn)) / math.sqrt((tp + fp) * (tp + fn) * (tn + fp) * (tn + fn))
if do_print:
print('')
print(name)
if threshold is not None:
print(' Threshold=' + str(threshold))
else:
threshold = -1
print(' Time=' + str(det_time))
print(' TP=' + str(tp))
print(' FP=' + str(fp))
print(' TN=' + str(tn))
print(' FN=' + str(fn))
print(' TPR=R=' + str(tpr))
print(' FPR=' + str(fpr))
print(' TNR=' + str(tnr))
print(' P=' + str(p))
print(' F1=' + str(fone))
print(' ACC=' + str(acc))
print(' MCC=' + str(mcc))
print("")
return {'tp': tp, 'fp': fp, 'tn': tn, 'fn': fn, 'tpr': tpr, 'fpr': fpr, 'tnr': tnr, 'p': p, 'f1': fone, 'acc': acc, 'threshold': threshold, 'name': name, 'time': det_time}
def print_confusion(name, tp_c, fn_c, tn_c, fp_c, run, grouping, out_c):
print(name)
print("Predicted")
s = ""
for description in list(tp_c.values())[0]: # Iterate over the inner dict of a random key from tp_c
s += description + "\t"
if len(description) < 8:
# Extra tab for short descriptions
s += "\t"
print(s + "\n" + str("Pos\tNeg\t" * len(tp_c)))
for description_train, inner_dict in tp_c.items():
s = ""
for description in inner_dict:
s += str(tp_c[description_train][description]) + "\t" + str(fn_c[description_train][description]) + "\t"
out_c.write(str(run) + "," + str(grouping) + "," + description_train + ",Pos" + "," + description + ",Pos" + "," + str(tp_c[description_train][description]) + "\n")
out_c.write(str(run) + "," + str(grouping) + "," + description_train + ",Neg" + "," + description + ",Pos" + "," + str(fn_c[description_train][description]) + "\n")
out_c.write(str(run) + "," + str(grouping) + "," + description_train + ",Pos" + "," + description + ",Neg" + "," + str(fp_c[description_train][description]) + "\n")
out_c.write(str(run) + "," + str(grouping) + "," + description_train + ",Neg" + "," + description + ",Neg" + "," + str(tn_c[description_train][description]) + "\n")
s += "\tPos - Actual\t" + description_train + "\n"
for description in inner_dict:
s += str(fp_c[description_train][description]) + "\t" + str(tn_c[description_train][description]) + "\t"
print(s + "\tNeg - Actual\t" + description_train)
print("")
def get_diffs(batches_a, batches_b, quantiles):
diffs = {}
for batch_a in batches_a:
for name, interv_list_a in batch_a.intervals_time.items():
if name not in diffs:
diffs[name] = {}
for q in quantiles:
diffs[name][q] = []
interv_list_quantiles_a = np.quantile(interv_list_a, quantiles)
for batch_b in batches_b:
if batch_a == batch_b:
continue
if name not in batch_b.intervals_time:
continue
interv_list_b = batch_b.intervals_time[name]
interv_list_quantiles_b = np.quantile(interv_list_b, quantiles)
diff = np.subtract(interv_list_quantiles_a, interv_list_quantiles_b)
for i, q in enumerate(quantiles):
diffs[name][q].append(diff[i])
return diffs
def get_quantile_vals(batches, quantiles):
vals = {}
num_obs = {}
for batch in batches:
for name, interv_list in batch.intervals_time.items():
if name not in vals:
vals[name] = [np.quantile(interv_list, quantiles)]
num_obs[name] = len(interv_list)
else:
vals[name].append(np.quantile(interv_list, quantiles))
num_obs[name] += len(interv_list)
return vals, num_obs
def get_crits(train_mean, train_var, train_cov_inv, train_num_obs, test_vals, test_num_obs, quantiiles):
crits = {}
for name in train_mean:
if name not in test_vals:
continue
if train_num_obs[name] < len(quantiles):
continue
if test_num_obs[name] < len(quantiles):
continue
crits[name] = {}
diff = test_vals[name] - train_mean[name]
mhd_sq = np.sum(diff @ train_cov_inv[name] * diff)
p_value = 1 - chi2.cdf(mhd_sq, df=len(quantiles))
crits[name] = p_value
return crits
def get_stats(data, num_batches):
mean = {}
var = {}
cov_inv = {}
for name, vals in data.items():
if len(vals) < num_batches / 2:
# Name only appears in some of the batches; likely a result of incorrectly collected intervals
continue
mean[name] = np.mean(vals, axis=0)
var[name] = np.var(vals, axis=0, ddof=0)
cov = np.cov(vals, rowvar=False)
try:
# Compute inverse covariance matrix
cov_inv[name] = np.linalg.inv(cov)
except np.linalg.LinAlgError:
try:
# If that fails, insert small values to avoid singular matrix
cov += 1e-6 * np.eye(cov.shape[0])
cov_inv[name] = np.linalg.inv(cov)
except np.linalg.LinAlgError:
# If all fails, try alternative method to invert covariance matrix
cov_inv[name] = np.linalg.pinv(cov)
return mean, var, cov_inv
def run_supervised(train, test, quantiles, run, grouping, out_best, out_all, out_c):
train_num_obs = {}
train_mean = {}
train_var = {}
train_cov_inv = {}
descriptions = set()
for label, train_dict in train.items():
train_num_obs[label] = {}
train_mean[label] = {}
train_var[label] = {}
train_cov_inv[label] = {}
for description, train_batches in train_dict.items():
descriptions.add(description)
train_vals, train_num_obs[label][description] = get_quantile_vals(train_batches, quantiles)
train_mean[label][description], train_var[label][description], train_cov_inv[label][description] = get_stats(train_vals, len(train_batches))
pred_pos_act_pos, pred_neg_act_pos, pred_neg_act_neg, pred_pos_act_neg = {}, {}, {}, {}
tp, fp, tn, fn = {}, {}, {}, {}
start_time = time.time()
for d_pred in descriptions:
pred_pos_act_pos[d_pred] = {}
pred_neg_act_pos[d_pred] = {}
pred_neg_act_neg[d_pred] = {}
pred_pos_act_neg[d_pred] = {}
tp[d_pred] = {}
fp[d_pred] = {}
tn[d_pred] = {}
fn[d_pred] = {}
for d_act in descriptions:
pred_pos_act_pos[d_pred][d_act] = 0
pred_neg_act_pos[d_pred][d_act] = 0
pred_neg_act_neg[d_pred][d_act] = 0
pred_pos_act_neg[d_pred][d_act] = 0
for label in [rootkit_key, normal_key]:
tp[d_pred][label] = 0
fp[d_pred][label] = 0
tn[d_pred][label] = 0
fn[d_pred][label] = 0
for label_act in test:
for d_act, test_batches in test[label_act].items():
for i, test_batch in enumerate(test_batches):
test_vals, test_num_obs = get_quantile_vals([test_batch], quantiles)
best_label = None
best_description = None
highest_pv = -1
for label_train, _ in train_mean.items():
for description_train in train_mean[label_train]:
pv_dict = get_crits(train_mean[label_train][description_train], train_var[label_train][description_train], train_cov_inv[label_train][description_train], train_num_obs[label_train][description_train], test_vals, test_num_obs, quantiles)
critical_value = sum(list(pv_dict.values()))
if critical_value > highest_pv:
best_label = label_train
best_description = description_train
highest_pv = critical_value
if label_act == best_label and d_act == best_description:
# Correct classification; add +1 to classified description/label for TP and +1 to all other description/label for TN
for eval_description in descriptions:
for eval_label in [rootkit_key, normal_key]:
if eval_description == d_act and eval_label == label_act:
tp[eval_description][eval_label] += 1
else:
tn[eval_description][eval_label] += 1
else:
# Incorrect classification; add +1 to misclassified actual value for FN, +1 for incorrect predicted value for FP, and +1 to all other description/label for TN
for eval_description in descriptions:
for eval_label in [rootkit_key, normal_key]:
if eval_description == d_act and eval_label == label_act:
fn[eval_description][eval_label] += 1
elif eval_description == best_description and eval_label == best_label:
fp[eval_description][eval_label] += 1
else:
tn[eval_description][eval_label] += 1
# Fill in confusion matrix
if label_act == rootkit_key and best_label == rootkit_key:
pred_pos_act_pos[d_act][best_description] += 1
elif label_act == rootkit_key and best_label == normal_key:
pred_neg_act_pos[d_act][best_description] += 1
elif label_act == normal_key and best_label == normal_key:
pred_neg_act_neg[d_act][best_description] += 1
elif label_act == normal_key and best_label == rootkit_key:
pred_pos_act_neg[d_act][best_description] += 1
else:
print("Labels " + label_act + " or " + best_label + " not one of [" + rootkit_key + ", " + normal_key + "]")
used_time = time.time() - start_time
avg = {}
for description in descriptions:
for label in [rootkit_key, normal_key]:
res = compute_results(True, description + "/" + label + " Results (Run " + str(run) + ")", tp[description][label], fn[description][label], tn[description][label], fp[description][label], -1, used_time)
out_all.write(str(run) + "," + str(grouping) + "," + description + "," + label + "," + str(res["f1"]) + "," + str(res["tp"]) + "," + str(res["fp"]) + "," + str(res["tn"]) + "," + str(res["fn"]) + "," + str(res["time"]) + "," + str(len(quantiles)) + "," + str(res["threshold"]) + "," + str(res["tpr"]) + "," + str(res["fpr"]) + "," + str(res["tnr"]) + "," + str(res["p"]) + "," + str(res["acc"]) + "\n")
for metric, val in res.items():
if metric not in avg:
avg[metric] = []
avg[metric].append(val)
print_confusion("Confusion Matrix (Run " + str(run) + ")", pred_pos_act_pos, pred_neg_act_pos, pred_neg_act_neg, pred_pos_act_neg, run, grouping, out_c)
out_best.write(str(run) + "," + str(grouping) + "," + str(np.mean(avg["f1"])) + "," + str(np.mean(avg["tp"])) + "," + str(np.mean(avg["fp"])) + "," + str(np.mean(avg["tn"])) + "," + str(np.mean(avg["fn"])) + "," + str(np.mean(avg["time"])) + "," + str(len(quantiles)) + "," + str(np.mean(avg["threshold"])) + "," + str(np.mean(avg["tpr"])) + "," + str(np.mean(avg["fpr"])) + "," + str(np.mean(avg["tnr"])) + "," + str(np.mean(avg["p"])) + "," + str(np.mean(avg["acc"])) + "\n")
return avg
def run_online(ivs, processing_order, num_train, quantiles, run, grouping, out_all, out_best, out_detail):
train_batches = []
step = 0
crits = {}
for description in processing_order:
for label in [normal_key, rootkit_key]:
if label not in crits:
crits[label] = []
steps_since_label_change = 0
for batch in ivs[label][description]:
step += 1
steps_since_label_change += 1
if len(train_batches) < num_train:
# For the first few batches, fill up the list of training batches
train_batches.append(batch)
out_detail.write(str(run) + "," + str(grouping) + "," + str(batch.timestamp) + "," + str(step) + "," + str(steps_since_label_change) + "," + str(label) + "," + str(description) + ",training_dummy," + str(len(quantiles)) + ",1\n")
continue
# Test the current batch against the current list of training batches
train_vals, train_num_obs = get_quantile_vals(train_batches, quantiles)
train_mean, train_var, train_cov_inv = get_stats(train_vals, len(train_batches))
test_vals, test_num_obs = get_quantile_vals([batch], quantiles)
pv_dict = get_crits(train_mean, train_var, train_cov_inv, train_num_obs, test_vals, test_num_obs, quantiles)
for name, pv in pv_dict.items():
out_detail.write(str(run) + "," + str(grouping) + "," + str(batch.timestamp) + "," + str(step) + "," + str(steps_since_label_change) + "," + str(label) + "," + str(description) + "," + str(name) + "," + str(len(quantiles)) + "," + str(pv) + "\n")
if steps_since_label_change == 1:
# This batch is the first one with a new label; anomaly is expected
crits[rootkit_key].append(pv_dict)
elif steps_since_label_change < num_train:
# Training data consist of both normal and anomalous batches; do not change counts for this case
pass
else:
# Training data only consists of normal batches; no anomaly is expected
crits[normal_key].append(pv_dict)
# Add batch to the list and remove oldest batch
train_batches = train_batches[1:] + [batch]
best_metrics = {"fone": None, "tp": None, "fp": None, "tn": None, "fn": None, "time": None, "thresh": None, "name_counts": None}
for thresh in np.logspace(-30, 0, num=100):
start_time = time.time()
tp, fp, tn, fn = 0, 0, 0, 0
for label in crits:
for crit_dict in crits[label]:
anomaly_detected = False
for name, crit in crit_dict.items():
if crit < thresh:
anomaly_detected = True
break
if anomaly_detected:
# Detected as anomaly
if label == rootkit_key:
tp += 1
else:
fp += 1
else:
# Detected as normal
if label == rootkit_key:
fn += 1
else:
tn += 1
fone = get_fone(tp, fn, tn, fp)
res_tmp = compute_results(False, "not_print", tp, fn, tn, fp, thresh, -1)
out_all.write(str(run) + "," + str(grouping) + "," + str(fone) + "," + str(tp) + "," + str(fp) + "," + str(tn) + "," + str(fn) + "," + str(-1) + "," + str(len(quantiles)) + "," + str(thresh) + "," + str(res_tmp["tpr"]) + "," + str(res_tmp["fpr"]) + "," + str(res_tmp["tnr"]) + "," + str(res_tmp["p"]) + "," + str(res_tmp["acc"]) + "\n")
total_time = time.time() - start_time
if best_metrics["fone"] is None or fone > best_metrics["fone"]:
best_metrics["fone"] = fone
best_metrics["tp"] = tp
best_metrics["fp"] = fp
best_metrics["tn"] = tn
best_metrics["fn"] = fn
best_metrics["time"] = total_time
best_metrics["thresh"] = thresh
res = compute_results(True, "Results (Run " + str(run) + ")", best_metrics["tp"], best_metrics["fn"], best_metrics["tn"], best_metrics["fp"], best_metrics["thresh"], best_metrics["time"])
out_best.write(str(run) + "," + str(grouping) + "," + str(res["f1"]) + "," + str(res["tp"]) + "," + str(res["fp"]) + "," + str(res["tn"]) + "," + str(res["fn"]) + "," + str(res["time"]) + "," + str(len(quantiles)) + "," + str(res["threshold"]) + "," + str(res["tpr"]) + "," + str(res["fpr"]) + "," + str(res["tnr"]) + "," + str(res["p"]) + "," + str(res["acc"]) + "\n")
return best_metrics
def run_offline(train, test, quantiles, run, grouping, out_best, out_all, out_c):
train_num_obs = {}
train_mean = {}
train_var = {}
train_cov_inv = {}
for description, train_batches in train.items():
train_vals, train_num_obs[description] = get_quantile_vals(train_batches, quantiles)
train_mean[description], train_var[description], train_cov_inv[description] = get_stats(train_vals, len(train_batches))
crits = {}
for label in test:
for description_train in train_mean:
# Interate through all training models
for description, test_batches in test[label].items():
# For each training model, iterate through all test values
if label not in crits:
crits[label] = {}
if description_train not in crits[label]:
crits[label][description_train] = {}
if description not in crits[label][description_train]:
crits[label][description_train][description] = []
for i, test_batch in enumerate(test_batches):
test_vals, test_num_obs = get_quantile_vals([test_batch], quantiles)
crits[label][description_train][description].append(get_crits(train_mean[description_train], train_var[description_train], train_cov_inv[description_train], train_num_obs[description_train], test_vals, test_num_obs, quantiles))
best_metrics = {"fone": None, "tp": None, "fp": None, "tn": None, "fn": None, "time": None, "thresh": None, "name_counts": None}
for thresh in np.logspace(-30, 0, num=100):
start_time = time.time()
tp, fp, tn, fn = 0, 0, 0, 0 # Counts differentiate only normal and anomalous classes, independent from sub-classes
tp_c, fp_c, tn_c, fn_c = {}, {}, {}, {} # Use sub-classes for the confusion matrix
name_counts = {} # Counts which function pairs are the ones most often reporting anomalies
for label in crits:
if label not in name_counts:
name_counts[label] = {}
for description_train, crits_inner in crits[label].items():
if description_train not in tp_c:
tp_c[description_train] = {}
fp_c[description_train] = {}
tn_c[description_train] = {}
fn_c[description_train] = {}
for description, crit_list in crits_inner.items():
if description not in tp_c[description_train]:
tp_c[description_train][description] = 0
fp_c[description_train][description] = 0
tn_c[description_train][description] = 0
fn_c[description_train][description] = 0
for crit_dict in crit_list:
anomaly_detected = False
for name, crit in crit_dict.items():
if crit < thresh:
anomaly_detected = True
if name not in name_counts[label]:
name_counts[label][name] = 0
name_counts[label][name] += 1
if anomaly_detected:
# Detected as anomaly
if label == rootkit_key:
if description_train == description:
tp += 1
tp_c[description_train][description] += 1
else:
if description_train == description:
fp += 1
fp_c[description_train][description] += 1
else:
# Detected as normal
if label == rootkit_key:
if description_train == description:
fn += 1
fn_c[description_train][description] += 1
else:
if description_train == description:
tn += 1
tn_c[description_train][description] += 1
fone = get_fone(tp, fn, tn, fp)
res_tmp = compute_results(False, "not_print", tp, fn, tn, fp, thresh, -1)
out_all.write(str(run) + "," + str(grouping) + "," + str(fone) + "," + str(tp) + "," + str(fp) + "," + str(tn) + "," + str(fn) + "," + str(-1) + "," + str(len(quantiles)) + "," + str(thresh) + "," + str(res_tmp["tpr"]) + "," + str(res_tmp["fpr"]) + "," + str(res_tmp["tnr"]) + "," + str(res_tmp["p"]) + "," + str(res_tmp["acc"]) + "\n")
total_time = time.time() - start_time
if best_metrics["fone"] is None or fone > best_metrics["fone"]:
best_metrics["fone"] = fone
best_metrics["tp"] = tp
best_metrics["fp"] = fp
best_metrics["tn"] = tn
best_metrics["fn"] = fn
best_metrics["time"] = total_time
best_metrics["thresh"] = thresh
best_metrics["tp_c"] = tp_c
best_metrics["fn_c"] = fn_c
best_metrics["tn_c"] = tn_c
best_metrics["fp_c"] = fp_c
best_metrics["name_counts"] = name_counts
res = compute_results(True, "Results (Run " + str(run) + ")", best_metrics["tp"], best_metrics["fn"], best_metrics["tn"], best_metrics["fp"], best_metrics["thresh"], best_metrics["time"])
print_confusion("Confusion Matrix (Run " + str(run) + ")", best_metrics["tp_c"], best_metrics["fn_c"], best_metrics["tn_c"], best_metrics["fp_c"], run, grouping, out_c)
out_best.write(str(run) + "," + str(grouping) + "," + str(res["f1"]) + "," + str(res["tp"]) + "," + str(res["fp"]) + "," + str(res["tn"]) + "," + str(res["fn"]) + "," + str(res["time"]) + "," + str(len(quantiles)) + "," + str(res["threshold"]) + "," + str(res["tpr"]) + "," + str(res["fpr"]) + "," + str(res["tnr"]) + "," + str(res["p"]) + "," + str(res["acc"]) + "\n")
if False:
print("Function pairs that reported most anomalies:")
for label, name_counts_dict in best_metrics["name_counts"].items():
print(label)
for name, cnt in name_counts_dict.items():
print(" " + name + ": " + str(cnt))
return best_metrics
parser = argparse.ArgumentParser()
parser.add_argument("--directory", "-d", default="events", type=str, help="Directory containing event data.")
parser.add_argument("--train_ratio", "-t", default=0.333, help="Fraction of normal data used for training.", type=float)
parser.add_argument("--seed", "-s", default=None, help="Seed for random sampling.", type=int)
parser.add_argument("--quantiles", "-q", default=9, help="Number of quantiles.", type=int)
parser.add_argument("--repeat", "-r", default=1, help="Repeat experiment with different training samples multiple times (only in offline mode).", type=int)
parser.add_argument("--mode", "-m", default="offline", choices=["offline", "supervised", "online"], help="Evaluate mode.", type=str)
parser.add_argument("--grouping", "-g", default="fun", choices=["seq", "fun"], help="Grouping of events to interval either sequentially (independent of type and enter/return) or between enter and return of same function type.", type=str)
parser.add_argument("--export_intervals", "-e", action="store_true", help="Write intervals to file (change interval grouping mode with --grouping parameter)")
args = parser.parse_args()
random.seed(args.seed)
if not os.path.isdir(args.directory):
print("Error: " + args.directory + " is not a valid directory.")
exit()
ivs = {normal_key: {}, rootkit_key: {}}
files = os.listdir(args.directory)
files.sort()
for filename in tqdm(files):
filepath = os.path.join(args.directory, filename)
# Check if it's a file (not a directory or symbolic link)
if os.path.isfile(filepath):
iv = Intervals(filepath, args.directory, args.grouping)
if iv.experiment.label == normal_key:
if iv.experiment.description not in ivs[normal_key]:
ivs[normal_key][iv.experiment.description] = []
ivs[normal_key][iv.experiment.description].append(iv)
elif iv.experiment.label == rootkit_key:
if iv.experiment.description not in ivs[rootkit_key]:
ivs[rootkit_key][iv.experiment.description] = []
ivs[rootkit_key][iv.experiment.description].append(iv)
print("Processed all files from " + args.directory)
print("")
if args.export_intervals:
export_all_intervals_to_csv(ivs, args.grouping)
# Use the following command to store intervals for PCA: export_all_intervals_to_pca(ivs, args.quantiles)
if args.mode == "offline":
with open("results_offline_best_" + args.grouping + ".csv", "w+") as out_best, open("results_offline_all_" + args.grouping + ".csv", "w+") as out_all, open("results_offline_confusion_" + args.grouping + ".csv", "w+") as out_c:
out_best.write("run,group,fone,tp,fp,tn,fn,time,q,thresh,tpr,fpr,tnr,p,acc\n")
out_all.write("run,group,fone,tp,fp,tn,fn,time,q,thresh,tpr,fpr,tnr,p,acc\n")
out_c.write("run,group,pred,pred_class,actual,actual_class,cnt\n")
for run in range(args.repeat):
run += 1 # Start with run #1
# Get training data from normal data (default case) and remove it from test data
ivs_train = {}
for description in ivs[normal_key]:
if args.quantiles > 0:
random.shuffle(ivs[normal_key][description])
split_point = math.ceil(len(ivs[normal_key][description]) * args.train_ratio)
ivs_train[description] = ivs[normal_key][description][:split_point]
ivs[normal_key][description] = ivs[normal_key][description][split_point:]
print("Normal batches: " + str(sum(len(value) for value in ivs[normal_key].values()) + sum(len(value) for value in ivs_train.values())))
print(" Normal batches for training: " + str(sum(len(value) for value in ivs_train.values())))
for description in ivs_train:
print(" " + description + ": " + str(len(ivs_train[description])))
print(" Normal batches for testing: " + str(sum(len(value) for value in ivs[normal_key].values())))
for description in ivs[normal_key]:
print(" " + description + ": " + str(len(ivs[normal_key][description])))
print("Anomalous batches: " + str(sum(len(value) for value in ivs[rootkit_key].values())))
for description in ivs[rootkit_key]:
print(" " + description + ": " + str(len(ivs[rootkit_key][description])))
if args.quantiles > 0:
quantiles = np.linspace(0, 1 - 1 / (args.quantiles + 1), (args.quantiles + 1))[1:] # Excludes 1 to avoid last term (which is usually an outlier), e.g., for args.quantiles = 100 will result in 0, 0.01, 0.02, ..., 0.99
else:
# This case is just used to test teh influence of the number of quantiles
quantiles = np.linspace(0, 1 - 1 / (run + 1), (run + 1))[1:] # Increase the number of quantiles by 1 in every run
best_metrics = run_offline(ivs_train, ivs, quantiles, run, args.grouping, out_best, out_all, out_c)
# Return training data to normal data in case that there is another iteration
for description in ivs_train:
ivs[normal_key][description].extend(ivs_train[description])
elif args.mode == "online":
with open("results_online_detail_" + args.grouping + ".csv", "w+") as out_detail, open("results_online_best_" + args.grouping + ".csv", "w+") as out_best, open("results_online_all_" + args.grouping + ".csv", "w+") as out_all:
out_detail.write("run,group,ts,step,anom_step,label,description,name,q,pv\n")
out_best.write("run,group,fone,tp,fp,tn,fn,time,q,thresh,tpr,fpr,tnr,p,acc\n")
out_all.write("run,group,fone,tp,fp,tn,fn,time,q,thresh,tpr,fpr,tnr,p,acc\n")
for run in range(args.repeat):
run += 1 # Start with run #1
processing_order = list(list(ivs.values())[0])
if run > 1:
# Leave batches in order for the first run, then shuffle the descriptions (not labels!) in each subsequent run
random.shuffle(processing_order)
num_train = math.ceil(len(ivs[normal_key][processing_order[0]]) * args.train_ratio)
print("Data will be processed with a sliding window of size " + str(num_train) + " in the following order:")
for processing_step in processing_order:
print(" " + processing_step + " " + normal_key + ": " + str(len(ivs[normal_key][processing_step])) + " batches")
print(" " + processing_step + " " + rootkit_key + ": " + str(len(ivs[rootkit_key][processing_step])) + " batches")
if args.quantiles > 0:
quantiles = np.linspace(0, 1 - 1 / (args.quantiles + 1), (args.quantiles + 1))[1:] # Excludes 1 to avoid last term (which is usually an outlier), e.g., for args.quantiles = 100 will result in 0, 0.01, 0.02, ..., 0.99
else:
# This case is just used to test the influence of the number of quantiles
quantiles = np.linspace(0, 1 - 1 / (run + 1), (run + 1))[1:] # Increase the number of quantiles by 1 in every run
run_online(ivs, processing_order, num_train, quantiles, run, args.grouping, out_all, out_best, out_detail)
elif args.mode == "supervised":
# Be aware that this mode is experimental and does not yield good results
with open("results_supervised_best_" + args.grouping + ".csv", "w+") as out_best, open("results_supervised_all_" + args.grouping + ".csv", "w+") as out_all, open("results_supervised_confusion_" + args.grouping + ".csv", "w+") as out_c:
out_best.write("run,group,fone,tp,fp,tn,fn,time,q,thresh,tpr,fpr,tnr,p,acc\n")
out_all.write("run,group,description,label,fone,tp,fp,tn,fn,time,q,thresh,tpr,fpr,tnr,p,acc\n")
out_c.write("run,group,pred,pred_class,actual,actual_class,cnt\n")
for run in range(args.repeat):
run += 1 # Start with run #1
ivs_train = {}
for label in ivs:
ivs_train[label] = {}
for description in ivs[label]:
if args.quantiles > 0:
random.shuffle(ivs[label][description])
split_point = math.ceil(len(ivs[label][description]) * args.train_ratio)
ivs_train[label][description] = ivs[label][description][:split_point]
ivs[label][description] = ivs[label][description][split_point:]
print("Batches for training: " + str(sum(len(value) for value in ivs_train[normal_key].values()) + sum(len(value) for value in ivs_train[rootkit_key].values())))
print(" Normal batches: " + str(sum(len(value) for value in ivs_train[normal_key].values())))
for description in ivs_train[normal_key]:
print(" " + description + ": " + str(len(ivs_train[normal_key][description])))
print(" Anomalous batches: " + str(sum(len(value) for value in ivs_train[rootkit_key].values())))
for description in ivs_train[rootkit_key]:
print(" " + description + ": " + str(len(ivs_train[rootkit_key][description])))
print("Batches for testing: " + str(sum(len(value) for value in ivs[normal_key].values()) + sum(len(value) for value in ivs[rootkit_key].values())))
print(" Normal batches: " + str(sum(len(value) for value in ivs[normal_key].values())))
for description in ivs[normal_key]:
print(" " + description + ": " + str(len(ivs[normal_key][description])))
print(" Anomalous batches: " + str(sum(len(value) for value in ivs[rootkit_key].values())))
for description in ivs[rootkit_key]:
print(" " + description + ": " + str(len(ivs[rootkit_key][description])))
if args.quantiles > 0:
quantiles = np.linspace(0, 1 - 1 / (args.quantiles + 1), (args.quantiles + 1))[1:] # Excludes 1 to avoid last term (which is usually an outlier), e.g., for args.quantiles = 100 will result in 0, 0.01, 0.02, ..., 0.99
else:
# This case is just used to test the influence of the number of quantiles
quantiles = np.linspace(0, 1 - 1 / (run + 1), (run + 1))[1:] # Increase the number of quantiles by 1 in every run
best_metrics = run_supervised(ivs_train, ivs, quantiles, run, args.grouping, out_best, out_all, out_c)
# Return training data to normal data in case that there is another iteration
for label in ivs:
for description in ivs[label]:
ivs[label][description].extend(ivs_train[label][description])