-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathprocess_data.py
647 lines (533 loc) · 25.6 KB
/
process_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
import array
import json
from itertools import chain
from statistics import median
from typing import *
import matplotlib
import matplotlib.pyplot as plt
from multiprocessing import Process
import os
import re
import gzip
import math
import numpy as np
import pandas as pd
import pandasql as psql
from skimage.filters import threshold_otsu
from scipy.stats import median_abs_deviation
from data_classes import Event, Interval, experiment_from_json
def __unique_vals__(lst: list) -> int:
values = []
unique = 0
for elem in lst:
if elem not in values:
values.append(elem)
unique += 1
return unique
def mean(intervals: [Interval]) -> float:
return sum([i.time for i in intervals]) / len(intervals)
class Plot:
args = []
processes = {}
processes_rootkit = {}
intervals = {}
intervals_rootkit = {}
interval_types = []
file_date = ""
experiment = None
events = []
events_rootkit = []
events_per_process = {}
events_per_process_rootkit = {}
dataframe = None
event_count = {}
event_count_rootkit = {}
def __init__(self, filename_a, filename_b):
file_a_rootkit = False
with gzip.open(filename_a, 'r') as file:
json_obj = json.load(file)
experiment = experiment_from_json(json_obj)
self.experiment = experiment
if self.experiment.label == "rootkit":
self.events_rootkit = experiment.events
file_a_rootkit = True
else:
self.events = experiment.events
with gzip.open(filename_b, 'r') as file:
json_obj = json.load(file)
experiment = experiment_from_json(json_obj)
if file_a_rootkit:
self.events = experiment.events
else:
self.events_rootkit = experiment.events
self.file_date = filename_a.replace("events/", "").replace("events_", "").replace(".json", "").replace(".gz", "")
for event in self.events:
try:
self.processes[event.pid]
except KeyError:
self.processes[event.pid] = []
self.processes[event.pid].append(event)
for event in self.events_rootkit:
try:
self.processes_rootkit[event.pid]
except KeyError:
self.processes_rootkit[event.pid] = []
self.processes_rootkit[event.pid].append(event)
for pid in self.processes:
for i in range(len(self.processes[pid]) - 1):
event_a = self.processes[pid][i]
event_b = self.processes[pid][i + 1]
type_name = event_a.probe_point + ":" + event_b.probe_point
try:
self.intervals[type_name]
except KeyError:
self.intervals[type_name] = []
self.intervals[type_name].append(
Interval(event_b.timestamp - event_a.timestamp, event_a, event_b, pid, event_a.tgid))
for pid in self.processes_rootkit:
for i in range(len(self.processes_rootkit[pid]) - 1):
event_a = self.processes_rootkit[pid][i]
event_b = self.processes_rootkit[pid][i + 1]
type_name = event_a.probe_point + ":" + event_b.probe_point
try:
self.intervals_rootkit[type_name]
except KeyError:
self.intervals_rootkit[type_name] = []
self.intervals_rootkit[type_name].append(
Interval(event_b.timestamp - event_a.timestamp, event_a, event_b, pid, event_a.tgid))
for interval_type in self.intervals.keys():
if interval_type not in self.interval_types:
self.interval_types.append(interval_type)
for interval_type in self.intervals_rootkit.keys():
if interval_type not in self.interval_types:
self.interval_types.append(interval_type)
for event in self.events:
try:
self.event_count[event.probe_point]
except KeyError:
self.event_count[event.probe_point] = 0
self.event_count[event.probe_point] += 1
for event in self.events_rootkit:
try:
self.event_count_rootkit[event.probe_point]
except KeyError:
self.event_count_rootkit[event.probe_point] = 0
self.event_count_rootkit[event.probe_point] += 1
def interval_type_counts(self):
plt.barh([x for x in self.intervals.keys()], [len(x) for x in self.intervals.values()])
plt.tight_layout()
plt.savefig("interval_distribution_" + self.file_date + ".svg")
plt.clf()
def distributions(self):
def make_histogram(name: str, values: [int]) -> None:
plt.hist(values, bins=__unique_vals__(values))
plt.title(name)
plt.yscale('linear')
plt.tight_layout()
plt.savefig("distribution_" + self.file_date + "_" + name + ".svg")
print(name + " saved")
plt.clf()
plot_processes = []
for name, values in self.intervals.items():
worker = Process(target=make_histogram, args=[name, [x.time for x in values]])
worker.start()
plot_processes.append(worker)
for worker in plot_processes:
worker.join()
def split(self, interval: str):
data_reference = [interval.time for interval in self.intervals[interval]]
data_rootkit = [interval.time for interval in self.intervals_rootkit[interval]]
#plt.boxplot(data, labels=["without rootkit", "rootkitted"], patch_artist=True)
upper_cut = np.mean(data_reference) * 5
data_reference = [i for i in data_reference if i < upper_cut]
data_reference = np.array(data_reference).reshape(-1, 1)
gmm = GaussianMixture(n_components=10, covariance_type='full')
gmm.fit(data_reference)
labels = gmm.predict(data_reference)
plt.yscale('log')
plt.xlim()
components = np.unique(labels)
for i, component in enumerate(components):
component_data = data_reference[labels == component]
plt.hist(component_data, bins=int(len(component_data)/10))
plt.savefig("fooo" + self.file_date + ".svg")
def kmeans(self, interval: str):
data_reference = [interval.time for interval in self.intervals[interval]]
data_rootkit = [interval.time for interval in self.intervals_rootkit[interval]]
# plt.boxplot(data, labels=["without rootkit", "rootkitted"], patch_artist=True)
upper_cut = np.mean(data_reference) * 5
data_reference = [i for i in data_reference if i < upper_cut]
data = pd.DataFrame(data_reference, columns=['runtime'])
k = 10
kmeans = KMeans(n_clusters=k, random_state=42)
kmeans.fit(data)
data['cluster'] = kmeans.fit_predict(data[['runtime']])
for i in range(k):
plt.hist(data[data['cluster'] == i]['runtime'],
bins=15, alpha=0.6, label=f'Cluster {i + 1}', edgecolor='black')
plt.title('Histogram of Runtimes by Cluster')
plt.yscale('log')
plt.xlabel('Runtime (ns)')
plt.ylabel('Frequency')
plt.legend()
plt.grid()
plt.savefig("baaar" + self.file_date + ".svg")
def distribution_comparison(self, only_interval:Optional[str]=None):
def make_histogram(name: str, values_a: [int], values_b: [int]) -> None:
plt.hist(values_a, bins=__unique_vals__(values_a), label="normal")
plt.hist(values_b, bins=__unique_vals__(values_b), label="with rootkit")
plt.title(name)
plt.yscale('log')
plt.xlabel('nano seconds')
plt.legend()
plt.tight_layout()
plt.savefig("distribution_comparison_" + self.file_date + "_" + name + ".pdf")
print(name + " saved")
plt.clf()
workers = []
for name in self.interval_types if only_interval is None else [only_interval]:
try:
data_reference = [x.time for x in self.intervals[name]]
data_rootkit = [x.time for x in self.intervals_rootkit[name]]
upper_cut = np.mean(data_reference) * 4
data_reference = [i for i in data_reference if i < upper_cut]
data_rootkit = [i for i in data_rootkit if i < upper_cut]
worker = Process(target=make_histogram, args=[name, data_reference, data_rootkit])
worker.start()
workers.append(worker)
except KeyError:
pass
for worker in workers:
worker.join()
def export_intervals_to_csv(self):
with open(self.file_date + '.csv', 'w+') as out:
out.write('name,id,delta,pid,tgit,class\n')
for name, interv in self.intervals.items():
for cnt, i in enumerate(interv):
out.write(str(name) + ',' + str(cnt) + ',' + str(i.time) + ',' + str(i.pid) + ',' + str(i.tgid) + ',Normal' + '\n')
for name, interv in self.intervals_rootkit.items():
for cnt, i in enumerate(interv):
out.write(str(name) + ',' + str(cnt) + ',' + str(i.time) + ',' + str(i.pid) + ',' + str(i.tgid) + ',Anomaly' + '\n')
def interval_means(self):
print("####interval means####")
print(f"{'name'.ljust(55)}\tnormal\t\trootkitted\tpercent slower")
print("value:standard_deviation #count")
for name in self.interval_types:
try:
data_reference = [i.time for i in self.intervals[name]]
upper_cut = np.mean(data_reference) * 5
data_reference = [i for i in data_reference if i < upper_cut]
data_rootkited = [i.time for i in self.intervals_rootkit[name]]
data_rootkited = [i for i in data_rootkited if i < upper_cut]
normal_mean = np.mean(data_reference)
normal_std = np.std(data_reference)
rootkit_mean = np.mean(data_rootkited)
rootkit_std = np.std(data_rootkited)
factor_mean = (rootkit_mean/normal_mean-1)
print(f"{name.ljust(55)}\t{normal_mean:.1f}:{normal_std:.1f} #{len(self.intervals[name])}\t\t{rootkit_mean:.1f}:{rootkit_std:.1f} #{len(self.intervals_rootkit[name])}\t\t{factor_mean*100:.1f}")
except KeyError:
pass
print("######################")
def interval_medians(self):
print("####interval medians####")
print(f"{'name'.ljust(55)}\tnormal\t\trootkitted\tpercent slower")
print("value:median_absolute_dviation #count")
for name in self.interval_types:
try:
normal_median = median([i.time for i in self.intervals[name]])
normal_mad = median_abs_deviation([i.time for i in self.intervals[name]])
rootkit_median = median([i.time for i in self.intervals_rootkit[name]])
rootkit_mad = median_abs_deviation([i.time for i in self.intervals_rootkit[name]])
factor_median = (rootkit_median/normal_median-1)
print(f"{name.ljust(55)}{normal_median:.1f}:{normal_mad:.1f} #{len(self.intervals[name])}\t\t{rootkit_median:.1f}:{rootkit_mad:.1f} #{len(self.intervals_rootkit[name])}\t\t{factor_median*100:.1f}")
except KeyError:
pass
print("######################")
def interval_means_latex(self):
print("####interval means####")
print(f"name\tnormal\t\trootkitted\tpercent slower")
for name in self.interval_types:
try:
data_reference = [i.time for i in self.intervals[name]]
upper_cut = np.mean(data_reference) * 5
data_reference = [i for i in data_reference if i < upper_cut]
data_rootkited = [i.time for i in self.intervals_rootkit[name]]
data_rootkited = [i for i in data_rootkited if i < upper_cut]
normal_mean = np.mean(data_reference)
rootkit_mean = np.mean(data_rootkited)
factor_mean = (rootkit_mean / normal_mean - 1)
name_escaped = name.replace('_', '\_')
print(f"{name_escaped} & {normal_mean:.1f} & {rootkit_mean:.1f} & {factor_mean*100:.1f} \\\\")
except KeyError:
pass
print("######################")
def interval_medians_latex(self):
print("####interval medians####")
print(f"{'name'.ljust(55)}\tnormal\t\trootkitted\tpercent slower")
for name in self.interval_types:
try:
normal_median = median([i.time for i in self.intervals[name]])
rootkit_median = median([i.time for i in self.intervals_rootkit[name]])
factor_median = (rootkit_median / normal_median - 1)
name_escaped = name.replace('_', '\_')
print(f"{name_escaped} & {normal_median:.1f} & {rootkit_median:.1f} & {factor_median*100:.1f} \\\\")
except KeyError:
pass
print("######################")
def interval_types_per_run(self):
# 16
fig, axs = plt.subplots(4, 4)
intervals_filtered = {}
for name, intervals in self.intervals.items():
for elem in intervals:
pid = elem.pid
try:
intervals_filtered[pid]
except KeyError:
intervals_filtered[pid] = {}
try:
intervals_filtered[pid][name]
except KeyError:
intervals_filtered[pid][name] = 0
intervals_filtered[pid][name] += 1
for i in range(16):
axs[int(i / 4), i % 4].barh(list(intervals_filtered[list(self.processes.keys())[i]].keys()),
intervals_filtered[list(self.processes.keys())[i]].values())
fig.savefig("interval_types_per_run_" + self.file_date + ".svg")
fig.clf()
def interval_types_per_run2(self):
def get_or0(dictionary, outer, inner):
try:
return dictionary[outer][inner]
except KeyError:
return 0
intervals_filtered = {}
for name, intervals in self.intervals.items():
for elem in intervals:
pid = elem.pid
if pid not in list(self.processes.keys()):
pass
try:
intervals_filtered[name]
except KeyError:
intervals_filtered[name] = {}
try:
intervals_filtered[name][pid]
except KeyError:
intervals_filtered[name][pid] = 0
intervals_filtered[name][pid] += 1
groups = list(intervals_filtered.keys())
categories = list(intervals_filtered[groups[0]].keys())
n_groups = len(groups)
n_categories = len(categories)
fig, ax = plt.subplots()
bar_width = 0.05
index = np.arange(n_groups)
for i, category in enumerate(categories):
values = [get_or0(intervals_filtered, group, category) for group in groups]
bar_positions = index + i * bar_width
ax.bar(bar_positions, values, bar_width, label=category)
ax.set_xlabel('Interval Name')
ax.set_ylabel('Interval Measure Count')
ax.set_xticks(index + bar_width * (n_categories / 2 - 0.5))
ax.set_xticklabels(groups, rotation=90)
plt.tight_layout()
filename = "interval_types_per_run2_" + self.file_date + ".svg"
plt.savefig(filename)
plt.clf()
def boxplot(self, interval: str):
data = [[interval.time for interval in self.intervals[interval]], [interval.time for interval in self.intervals_rootkit[interval]]]
plt.boxplot(data, labels=["without rootkit", "rootkitted"], patch_artist=True)
plt.title(interval)
plt.ylabel("nano seconds")
plt.tight_layout()
filename = "boxplots_" + self.file_date + ".svg"
plt.savefig(filename)
print(f"saved {filename}")
plt.clf()
def boxplot4(self):
interval = "filldir64-return:filldir64-enter"
data_no_rootkit = self.intervals[interval]
data_rootkitted = self.intervals_rootkit[interval]
threshold = threshold_otsu(np.array([i.time for i in data_no_rootkit] + [i.time for i in data_rootkitted]))
data = [
[i.time for i in data_no_rootkit if i.time < threshold],
[i.time for i in data_no_rootkit if i.time >= threshold],
[i.time for i in data_rootkitted if i.time < threshold],
[i.time for i in data_rootkitted if i.time >= threshold]
]
plt.boxplot(data, labels=["no rootkit",
"no rootkit",
"rootkitted",
"rootkitted"],
patch_artist=True)
plt.title(interval)
plt.ylabel("nano seconds")
print("### interval means [cuttoff] ###")
print("mean above threshold, no rootkit: " + str(mean([i for i in data_no_rootkit if i.time >= threshold])))
print("mean above threshold, rootkitted: " + str(mean([i for i in data_rootkitted if i.time >= threshold])))
print("################################")
plt.tight_layout()
filename = "boxplot4_" + self.file_date + ".svg"
plt.savefig(filename)
print(f"saved {filename}")
plt.clf()
def print_num_processes(self):
print("# of PIDs found in dataset: " + str(len(self.processes)))
def __fill_events_per_process(self):
if self.events_per_process:
# was already filled
return
for pid in self.processes:
num_events = len([x for x in self.events if x.pid == pid])
# print(f"In {pid} are {num_events} events.")#
self.events_per_process[pid] = num_events
def __generate_pandas_dataframe(self):
if self.dataframe:
return
self.dataframe = pd.DataFrame([vars(event) for event in self.events])
def print_num_events_per_process(self, event_name: str):
self.__generate_pandas_dataframe()
df = self.dataframe
query = f"SELECT pid, count(*) AS event_count FROM df WHERE probe_point LIKE '%{event_name}%' GROUP BY pid"
result = psql.sqldf(query, locals())
print(result)
def plot_event_timeline(self):
"""
Plot timeline of single events for the first PID.
"""
import matplotlib.colors as mcolors
import matplotlib.patches as mpatches
self.__generate_pandas_dataframe()
df = self.dataframe
query = f"SELECT DISTINCT probe_point FROM df"
df = psql.sqldf(query, locals())
event_types = list(chain(*df.values.tolist()))
colors = {}
counter = 0
for event_type in event_types:
colors[event_type] = list(mcolors.BASE_COLORS.values())[counter]
counter += 1
middle_pid = list(self.processes.keys())[int(len(list(self.processes.keys())) / 2)]
first_pid = list(self.processes.keys())[0]
events = [event for event in self.events if event.pid == first_pid]
plt.figure(figsize=(10, 2))
fig, ax = plt.subplots()
# Scatter plot each event on the timeline
for event in events:
ax.scatter(event.timestamp, 0, marker='.', color=colors[event.probe_point], s=2)
#ax.text(event.timestamp, 0.05, event.probe_point, ha='center')
# Set labels and title
ax.set_xlabel('Time')
ax.set_yticks([])
ax.set_title('Timeline of Events')
legend = []
for name, color in colors.items():
legend.append(mpatches.Patch(color=color, label=name.replace("__", "")))
print(name)
ax.legend(handles=legend)
filename = "event_timeline2_" + self.file_date + ".svg"
plt.savefig(filename)
plt.clf()
def print_statistics(self):
print("Dataset has")
print(f"{len(self.events)} events for the run without rootkit")
print(f"and {len(self.events_rootkit)} events with rootkit.")
print("")
print("no rootkit")
for key, value in self.event_count.items():
print(f"{key}: {value}")
print("rootkit")
for key, value in self.event_count_rootkit.items():
print(f"{key}: {value}")
print("")
def check_events_per_process(self) -> bool:
self.__fill_events_per_process()
mean = np.mean(list(self.events_per_process.values()))
standard_deviation = np.std(list(self.events_per_process.values()))
problem = False
for pid, events in self.events_per_process.items():
if np.abs(events - mean) > (5 * standard_deviation):
if not problem:
print(f"Arithmetic mean is {mean}.")
print(f"Standard deviation is {standard_deviation}.")
print(f"PID {pid}'s # of events ({events}) differs from the mean ({mean}) more than 5x the standard deviation.")
problem = True
return problem
def sanity_check(self):
problem = self.check_events_per_process() # or self.check*
if problem:
print("#############################################################")
print("THIS DATASET DID NOT PASS THE SANITY CHECK! IT MAY MISS DATA!")
print("#############################################################")
def get_slice_means(self, slices: List[Tuple[int, int]], interval: str) -> List[Tuple[int, int]]:
data_reference = [x.time for x in self.intervals[interval]]
data_rootkit = [x.time for x in self.intervals_rootkit[interval]]
upper_cut = np.mean(data_reference) * 4
data_reference = [i for i in data_reference if i < upper_cut]
data_rootkit = [i for i in data_rootkit if i < upper_cut]
result_slices = []
for slice in slices:
begin = slice[0]
end = slice[1]
slice_reference = [i for i in data_reference if begin < i < end]
slice_rootkit = [i for i in data_rootkit if begin < i < end]
slice_reference_mean = np.mean(slice_reference)
slice_rootkit_mean = np.mean(slice_rootkit)
print("mean (reference):\t" + str(slice_reference_mean))
print("mean (rootkit):\t" + str(slice_rootkit_mean))
print("difference:\t" + str(slice_rootkit_mean - slice_reference_mean) + "\n")
result_slices.append((slice_reference_mean, slice_rootkit_mean))
return result_slices
def make_result_histogram(self):
interval_name = "filldir64-return:filldir64-enter"
color_reference = "tab:orange"
color_rootkit = "tab:blue"
data_reference = [x.time for x in self.intervals[interval_name]]
data_rootkit = [x.time for x in self.intervals_rootkit[interval_name]]
upper_cut = np.mean(data_reference) * 4
data_reference = [i for i in data_reference if i < upper_cut]
data_rootkit = [i for i in data_rootkit if i < upper_cut]
plt.hist(data_reference, bins=__unique_vals__(data_reference), label="normal", color=color_reference)
plt.hist(data_rootkit, bins=__unique_vals__(data_rootkit), label="with rootkit", color=color_rootkit)
plt.title(interval_name)
plt.yscale('log')
plt.xlabel('nano seconds')
slice_means = self.get_slice_means([(0, 1650), (3550, 7000), (7000, 10300), (14840, 17440), (18270, 21470)], "filldir64-return:filldir64-enter")
for slice_mean in slice_means:
a = slice_mean[0]
b = slice_mean[1]
plt.axvline(x=a, linestyle="--", zorder=1, lw=1, color=color_reference)
plt.axvline(x=b, linestyle="--", zorder=1, lw=1, color=color_rootkit)
plt.plot(slice_mean, [100, 100], color='gray', lw=1, linestyle="-")
plt.annotate("{:.1f}".format(b-a), xy=(a + (b-a)/2, 100), xytext=(b+400, 120), arrowprops=dict(arrowstyle='->', color='black', lw=1))
plt.legend()
plt.tight_layout()
plt.savefig("distribution_comparison_" + self.file_date + "_" + interval_name + ".pdf")
print(interval_name + " saved")
plt.clf()
def get_weighted_overal_slice_mean(self, slices: List[Tuple[int, int]], interval: str) -> Tuple[int, int]:
data_reference = [x.time for x in self.intervals[interval]]
data_rootkit = [x.time for x in self.intervals_rootkit[interval]]
upper_cut = np.mean(data_reference) * 4
data_reference = [i for i in data_reference if i < upper_cut]
data_rootkit = [i for i in data_rootkit if i < upper_cut]
data_ref_len = 0
data_rk_len = 0
result_ref = 0
result_rk = 0
for slice in slices:
begin = slice[0]
end = slice[1]
slice_reference = [i for i in data_reference if begin < i < end]
slice_rootkit = [i for i in data_rootkit if begin < i < end]
slice_reference_mean = np.mean(slice_reference)
slice_rootkit_mean = np.mean(slice_rootkit)
result_ref += slice_reference_mean * len(slice_reference)
result_rk += slice_rootkit_mean * len(slice_rootkit)
data_ref_len += len(slice_reference)
data_rk_len += len(slice_rootkit)
result_ref = result_ref / data_ref_len
result_rk = result_rk / data_rk_len
print(f"ref: {result_ref:.1f}, rk: {result_rk:.1f}")
return (result_ref, result_rk)