From b74dcfb607439b1ed5ef2450d82a9d21094dd6ae Mon Sep 17 00:00:00 2001
From: arobitzsch
Date: Mon, 28 Aug 2023 17:36:49 +0200
Subject: [PATCH] 4.2-11
---
DESCRIPTION | 4 ++--
R/RcppExports.R | 2 +-
R/tam.fa.R | 6 +++---
R/tam.latreg.R | 8 +++++---
R/tam.mml.R | 7 ++-----
R/tam_calc_posterior.R | 13 ++++++-------
R/tam_mml_person_posterior.R | 17 +++++++++++++++--
README.md | 16 +++++++++-------
docs/404.html | 2 +-
docs/authors.html | 10 +++++-----
docs/index.html | 2 +-
docs/pkgdown.yml | 2 +-
docs/reference/IRT.drawPV.html | 2 +-
docs/reference/IRT.itemfit.html | 2 +-
docs/reference/IRT.truescore.html | 2 +-
docs/reference/data.cqc.html | 14 +++++++-------
docs/reference/lavaanify.IRT.html | 4 ++--
docs/reference/msq.itemfit.html | 4 ++--
docs/reference/tam.fit.html | 10 +++++-----
docs/reference/tam.latreg.html | 3 ++-
docs/reference/tam.linking.html | 8 ++++----
docs/reference/tam.mml.html | 4 ++--
docs/reference/tam.modelfit.html | 2 +-
docs/reference/tam.np.html | 2 +-
docs/reference/tam.pv.html | 20 ++++++++++----------
inst/CITATION | 3 ++-
inst/NEWS | 9 +++++++--
man/tam.latreg.Rd | 5 +++--
src/RcppExports.cpp | 2 +-
src/init.c | 2 +-
30 files changed, 104 insertions(+), 83 deletions(-)
diff --git a/DESCRIPTION b/DESCRIPTION
index 51f13d3..9460deb 100644
--- a/DESCRIPTION
+++ b/DESCRIPTION
@@ -1,8 +1,8 @@
Package: TAM
Type: Package
Title: Test Analysis Modules
-Version: 4.2-1
-Date: 2022-08-29 11:02:47
+Version: 4.2-11
+Date: 2023-08-28 17:23:17.934842
Author:
Alexander Robitzsch [aut,cre] (),
Thomas Kiefer [aut],
diff --git a/R/RcppExports.R b/R/RcppExports.R
index df98303..9cacc60 100644
--- a/R/RcppExports.R
+++ b/R/RcppExports.R
@@ -1,5 +1,5 @@
## File Name: RcppExports.R
-## File Version: 4.002001
+## File Version: 4.002011
# Generated by using Rcpp::compileAttributes() -> do not edit by hand
# Generator token: 10BE3573-1514-4C36-9D1C-5A225CD40393
diff --git a/R/tam.fa.R b/R/tam.fa.R
index e13fb99..e249857 100644
--- a/R/tam.fa.R
+++ b/R/tam.fa.R
@@ -1,5 +1,5 @@
## File Name: tam.fa.R
-## File Version: 9.258
+## File Version: 9.261
#---- Exploratory Factor Analysis and Bifactor Models
@@ -116,7 +116,7 @@ tam.fa <- function( resp, irtmodel, dims=NULL, nfactors=NULL,
# oblimin rotation in exploratory factor analysis
if (irtmodel=="efa"){
- res$efa.oblimin <- GPArotation::oblimin(L=B.stand)
+ res$efa.oblimin <- GPArotation::oblimin(A=B.stand)
# Schmid Leiman transformation
corrmatr <- tcrossprod( B.stand )
diag(corrmatr) <- 1
@@ -132,4 +132,4 @@ tam.fa <- function( resp, irtmodel, dims=NULL, nfactors=NULL,
#--- output
return(res)
}
-#####################################################################
+
diff --git a/R/tam.latreg.R b/R/tam.latreg.R
index c464d47..5e85389 100644
--- a/R/tam.latreg.R
+++ b/R/tam.latreg.R
@@ -1,5 +1,5 @@
## File Name: tam.latreg.R
-## File Version: 9.341
+## File Version: 9.343
###################################################################
# latent regression
@@ -244,6 +244,8 @@ tam.latreg <- function( like, theta=NULL, Y=NULL, group=NULL,
hwtE=hwt, hwt=hwt, ndim=ndim, theta=theta )
person <- res$person
EAP.rel <- res$EAP.rel
+ M_post <- res$M_post
+ SD_post <- res$SD_post
#cat("person parameters") ; a1 <- Sys.time(); print(a1-a0) ; a0 <- a1
############################################################
@@ -288,7 +290,7 @@ tam.latreg <- function( like, theta=NULL, Y=NULL, group=NULL,
deviance.history <- deviance.history[ 1:iter, ]
res <- list( "beta"=beta, "variance"=variance,
"person"=person, pid=pid, "EAP.rel"=EAP.rel,
- "post"=hwt, "theta"=theta,
+ "post"=hwt, M_post=M_post, SD_post=SD_post, "theta"=theta,
"Y"=Y, "group"=group,
"G"=if ( is.null(group)){1} else { length(unique( group ) )},
"groups"=if ( is.null(group)){1} else { groups },
@@ -303,7 +305,7 @@ tam.latreg <- function( like, theta=NULL, Y=NULL, group=NULL,
"nnodes"=nnodes, "deviance"=deviance,
"ic"=ic, thetasamp.density=thetasamp.density,
"deviance.history"=deviance.history,
- "control"=con1a, "iter"=iter,
+ "control"=con1a, "iter"=iter,
"YSD"=YSD, CALL=CALL, latreg_stand=latreg_stand )
class(res) <- "tam.latreg"
return(res)
diff --git a/R/tam.mml.R b/R/tam.mml.R
index 99ccba0..3dd7fe7 100644
--- a/R/tam.mml.R
+++ b/R/tam.mml.R
@@ -1,5 +1,5 @@
## File Name: tam.mml.R
-## File Version: 9.804
+## File Version: 9.863
tam.mml <- function( resp, Y=NULL, group=NULL, irtmodel="1PL",
formulaY=NULL, dataY=NULL,
@@ -81,9 +81,6 @@ tam.mml <- function( resp, Y=NULL, group=NULL, irtmodel="1PL",
}
nitems <- ncol(resp) # number of items
- if (is.null(colnames(resp))){
- colnames(resp) <- paste0( "I", 100+1:nitems )
- }
nstud <- nrow(resp) # number of students
#*****
nstud1 <- sum(1*( rowSums( 1 - is.na(resp) ) > 0 ))
@@ -532,7 +529,7 @@ tam.mml <- function( resp, Y=NULL, group=NULL, irtmodel="1PL",
"iter"=iter,
"printxsi"=printxsi,
"YSD"=YSD, CALL=CALL, latreg_stand=latreg_stand,
- prior_list_xsi=prior_list_xsi, penalty_xsi=penalty_xsi )
+ prior_list_xsi=prior_list_xsi, penalty_xsi=penalty_xsi)
class(res) <- "tam.mml"
return(res)
}
diff --git a/R/tam_calc_posterior.R b/R/tam_calc_posterior.R
index 938014e..1788039 100644
--- a/R/tam_calc_posterior.R
+++ b/R/tam_calc_posterior.R
@@ -1,14 +1,13 @@
## File Name: tam_calc_posterior.R
-## File Version: 9.20
+## File Version: 9.218
-
-###########################################################
tam_calc_posterior <- function(rprobs, gwt, resp, nitems,
resp.ind.list, normalization=TRUE,
thetasamp.density=NULL, snodes=0, resp.ind=NULL,
avoid.zerosum=FALSE, logprobs=FALSE )
{
+a0 <- Sys.time()
fx <- gwt
tsd <- NULL
# calculate individual 'sampling weight'
@@ -23,9 +22,8 @@ tam_calc_posterior <- function(rprobs, gwt, resp, nitems,
nstud <- nrow(fx)
storage.mode(resp) <- "integer"
fx0 <- fx
+#cat("start calcfx") ; a1 <- Sys.time(); print(a1-a0) ; a0 <- a1
fx <- .Call('_TAM_calcfx', PACKAGE='TAM', fx, rprobs, resp.ind.list, resp)
-# cat("nach calcfx") ; a1 <- Sys.time(); print(a1-a0) ; a0 <- a1
-
if (avoid.zerosum ){
fxs <- rowSums( fx )
m1 <- max( min( fxs[ fxs > 0 ], na.rm=TRUE), 1E-200 ) / 1E3 / ncol(fx)
@@ -42,17 +40,18 @@ tam_calc_posterior <- function(rprobs, gwt, resp, nitems,
} else {
hwt <- fx
}
- res <- list("hwt"=hwt, "rfx"=rfx )
+# cat("nach normalization") ; a1 <- Sys.time(); print(a1-a0) ; a0 <- a1
+ res <- list(hwt=hwt, rfx=rfx )
res$fx1 <- fx / gwt
if ( snodes > 0 ){
res[["swt" ]] <- fx
res$gwt <- gwt
}
res$tsd <- tsd
+# cat("before output") ; a1 <- Sys.time(); print(a1-a0) ; a0 <- a1
#--- output
return(res)
}
-#####################################################################
calc_posterior.v2 <- tam_calc_posterior
diff --git a/R/tam_mml_person_posterior.R b/R/tam_mml_person_posterior.R
index 566f671..6b90222 100644
--- a/R/tam_mml_person_posterior.R
+++ b/R/tam_mml_person_posterior.R
@@ -1,5 +1,5 @@
## File Name: tam_mml_person_posterior.R
-## File Version: 0.12
+## File Version: 0.15
tam_mml_person_posterior <- function(pid, nstud, pweights,
resp, resp.ind, snodes, hwtE, hwt, ndim, theta )
@@ -32,7 +32,20 @@ tam_mml_person_posterior <- function(pid, nstud, pweights,
colnames(person)[ which( cnp=="SD.EAP" ) ] <- paste("SD.EAP.Dim", dd, sep="")
}
}
+
+ #*** means and standard deviations of posterior distributions
+ SD <- M <- rep(NA, ndim)
+ post <- hwtE
+ n <- nrow(post)
+ for (dd in 1L:ndim){
+ theta_dim <- theta[,dd]
+ mt <- matrix( theta_dim, nrow=n, ncol=length(theta_dim), byrow=TRUE)
+ M[dd] <- sum( mt*post*pweights ) / sum(pweights)
+ M2 <- sum( mt^2*post*pweights ) / sum(pweights)
+ SD[dd] <- sqrt( M2 - M[dd]^2 )
+ }
+
#----- OUTPUT
- res <- list( person=person, EAP.rel=EAP.rel )
+ res <- list( person=person, EAP.rel=EAP.rel, M_post=M, SD_post=SD )
return(res)
}
diff --git a/README.md b/README.md
index 54c877e..552f285 100644
--- a/README.md
+++ b/README.md
@@ -4,11 +4,8 @@
If you use `TAM` and have suggestions for improvement or have found bugs, please email me at robitzsch@leibniz-ipn.de.
Please always provide a minimal dataset, necessary to demonstrate the problem,
a minimal runnable code necessary to reproduce the issue, which can be run on the given dataset, and
-all necessary information on the used librarys, the R version, and the OS it is run on, perhaps a sessionInfo().
+all necessary information on the used librarys, the R version, and the OS it is run on, perhaps a ``sessionInfo()``.
-#### Manual
-
-The manual may be found here [https://alexanderrobitzsch.github.io/TAM/](https://alexanderrobitzsch.github.io/TAM/)
#### CRAN version `TAM` 4.1-4 (2022-08-28)
@@ -24,13 +21,18 @@ The CRAN version can be installed from within R using:
utils::install.packages("TAM")
```
-#### GitHub version `TAM` 4.2-1 (2022-08-29)
+#### GitHub version `TAM` 4.2-11 (2023-08-28)
-[![](https://img.shields.io/badge/github%20version-4.2--1-orange.svg)](https://github.com/alexanderrobitzsch/TAM)
+[![](https://img.shields.io/badge/github%20version-4.2--11-orange.svg)](https://github.com/alexanderrobitzsch/TAM)
The version hosted [here](https://github.com/alexanderrobitzsch/TAM) is the development version of `TAM`.
-The GitHub version can be installed using `devtools` as:
+The GitHub version can be installed using `devtools` as
```r
devtools::install_github("alexanderrobitzsch/TAM")
```
+or alternatively use
+
+```r
+utils::install.packages('TAM', repos = c('https://alexanderrobitzsch.r-universe.dev', 'https://cloud.r-project.org'))
+```
diff --git a/docs/404.html b/docs/404.html
index 8f04439..f77bc79 100644
--- a/docs/404.html
+++ b/docs/404.html
@@ -71,7 +71,7 @@
TAM
- 4.2-1
+ 4.2-2
diff --git a/docs/authors.html b/docs/authors.html
index 1399ad4..7909b4c 100644
--- a/docs/authors.html
+++ b/docs/authors.html
@@ -71,7 +71,7 @@
TAM
- 4.2-1
+ 4.2-2
@@ -111,12 +111,12 @@ Citation
Source: inst/CITATION
- Robitzsch, A., Kiefer, T., & Wu, M. (2022). TAM: Test Analysis Modules. R package version 4.2-1. https://CRAN.R-project.org/package=TAM
- @Manual{TAM_4.2-1,
+ Robitzsch, A., Kiefer, T., & Wu, M. (2023). TAM: Test Analysis Modules. R package version 4.2-2. https://CRAN.R-project.org/package=TAM
+ @Manual{TAM_4.2-2,
title = {TAM: Test Analysis Modules},
author = {Alexander Robitzsch and Thomas Kiefer and Margaret Wu},
- year = {2022},
- note = {R package version 4.2-1},
+ year = {2023},
+ note = {R package version 4.2-2},
url = {https://CRAN.R-project.org/package=TAM},
}
diff --git a/docs/index.html b/docs/index.html
index 0276eb2..33810ec 100644
--- a/docs/index.html
+++ b/docs/index.html
@@ -43,7 +43,7 @@
TAM
- 4.2-1
+ 4.2-2
diff --git a/docs/pkgdown.yml b/docs/pkgdown.yml
index 807f3d6..4330535 100644
--- a/docs/pkgdown.yml
+++ b/docs/pkgdown.yml
@@ -2,5 +2,5 @@ pandoc: 1.13.1
pkgdown: 1.5.1
pkgdown_sha: ~
articles: []
-last_built: 2022-08-29T09:18Z
+last_built: 2023-01-25T12:12Z
diff --git a/docs/reference/IRT.drawPV.html b/docs/reference/IRT.drawPV.html
index f14b639..35ebd08 100644
--- a/docs/reference/IRT.drawPV.html
+++ b/docs/reference/IRT.drawPV.html
@@ -154,7 +154,7 @@ Examp
dat <- data.read
# fit Rasch model
-mod <- rasch.mml2(dat)
+mod <- rasch.mml2(dat)
# draw 10 plausible values
pv1 <- TAM::IRT.drawPV(mod, NPV=10)
}
diff --git a/docs/reference/IRT.itemfit.html b/docs/reference/IRT.itemfit.html
index 249226c..6908dc0 100644
--- a/docs/reference/IRT.itemfit.html
+++ b/docs/reference/IRT.itemfit.html
@@ -205,7 +205,7 @@ Examp
a <- rep(1,I)
a[c(3,8)] <- c( 1.7, .4 )
# simulate 2PL data
-dat <- sirt::sim.raschtype( theta=rnorm(N), b=b, fixed.a=a)
+dat <- sirt::sim.raschtype( theta=rnorm(N), b=b, fixed.a=a)
# fit 1PL model
mod <- TAM::tam.mml( dat )
diff --git a/docs/reference/IRT.truescore.html b/docs/reference/IRT.truescore.html
index 643de1b..c3d8983 100644
--- a/docs/reference/IRT.truescore.html
+++ b/docs/reference/IRT.truescore.html
@@ -157,7 +157,7 @@ Value
true scores \(\tau( \theta ) \).
See also
- See also sirt::truescore.irt
+
See also sirt::truescore.irt
for a conversion function for generalized partial credit models.
Examples
diff --git a/docs/reference/data.cqc.html b/docs/reference/data.cqc.html
index 667522c..b633fac 100644
--- a/docs/reference/data.cqc.html
+++ b/docs/reference/data.cqc.html
@@ -180,7 +180,7 @@
-
See the sirt::R2conquest
function
+
See the sirt::R2conquest
function
for running ConQuest software from within R.
See the WrightMap package for functions
connected to reading ConQuest files and creating Wright maps.
@@ -219,16 +219,16 @@
Examp
#------- ConQuest
# estimate model
-cmod01 <- sirt::R2conquest( dat, name="mod01", path.conquest=path.conquest)
+cmod01 <- sirt::R2conquest( dat, name="mod01", path.conquest=path.conquest)
summary(cmod01) # summary output
# read shw file with some terms
-shw01a <- sirt::read.show( "mod01.shw" )
+shw01a <- sirt::read.show( "mod01.shw" )
cmod01$shw.itemparameter
# read person item maps
-pi01a <- sirt::read.pimap( "mod01.shw" )
+pi01a <- sirt::read.pimap( "mod01.shw" )
cmod01$shw.pimap
# read plausible values (npv=10 plausible values)
-pv01a <- sirt::read.pv(pvfile="mod01.pv", npv=10)
+pv01a <- sirt::read.pv(pvfile="mod01.pv", npv=10)
cmod01$person
# read ConQuest model
@@ -256,7 +256,7 @@ Examp
#--- ConQuest
# estimate model
maxK <- max( dat, na.rm=TRUE )
-cmod02a <- sirt::R2conquest( dat, itemcodes=0:maxK, model="item+item*step",
+cmod02a <- sirt::R2conquest( dat, itemcodes=0:maxK, model="item+item*step",
name="mod02a", path.conquest=path.conquest)
summary(cmod02a) # summary output
@@ -290,7 +290,7 @@ Examp
X <- data.cqc03[,"rater",drop=FALSE]
X$rater <- as.numeric(substring( X$rater, 2 )) # convert 'rater' in numeric format
maxK <- max( resp, na.rm=TRUE)
-cmod03a <- sirt::R2conquest( resp, X=X, regression="", model="item+step+rater",
+cmod03a <- sirt::R2conquest( resp, X=X, regression="", model="item+step+rater",
name="mod03a", path.conquest=path.conquest, set.constraints="cases" )
summary(cmod03a) # summary output
diff --git a/docs/reference/lavaanify.IRT.html b/docs/reference/lavaanify.IRT.html
index 80a7734..c2ea76c 100644
--- a/docs/reference/lavaanify.IRT.html
+++ b/docs/reference/lavaanify.IRT.html
@@ -197,10 +197,10 @@ See a
diff --git a/docs/reference/msq.itemfit.html b/docs/reference/msq.itemfit.html
index 306e5f1..aab8627 100644
--- a/docs/reference/msq.itemfit.html
+++ b/docs/reference/msq.itemfit.html
@@ -196,7 +196,7 @@ Examp
# create some misfitting items
a[c(1,3)] <- c(.5, 1.5 )
# simulate data
-dat <- sirt::sim.raschtype( rnorm(N), b=b, fixed.a=a )
+dat <- sirt::sim.raschtype( rnorm(N), b=b, fixed.a=a )
#*** estimate Rasch model
mod1 <- TAM::tam.mml(resp=dat)
# compute WLEs
@@ -218,7 +218,7 @@ Examp
library(mirt)
mod1b <- mirt::mirt( dat, model=1, itemtype="Rasch", verbose=TRUE )
print(mod1b)
-sirt::mirt.wrapper.coef(mod1b)
+sirt::mirt.wrapper.coef(mod1b)
fmod1b <- mirt::itemfit(mod1b, Theta=as.matrix(wmod1,ncol=1),
Zh=TRUE, X2=FALSE, S_X2=FALSE )
cbind( fit2a$fit_data, fmod1b )
diff --git a/docs/reference/tam.fit.html b/docs/reference/tam.fit.html
index 58cd605..5864efd 100644
--- a/docs/reference/tam.fit.html
+++ b/docs/reference/tam.fit.html
@@ -219,7 +219,7 @@ See a
for models fitted with JML.
See tam.personfit
for computing person fit statistics.
Item fit and person fit based on estimated person parameters can also be
-calculated using the sirt::pcm.fit
function
+calculated using the sirt::pcm.fit
function
in the sirt package (see Example 1 and Example 2).
Examples
@@ -251,7 +251,7 @@
Examp
# extract item parameters
b1 <- - mod1$AXsi[, -1 ]
# assess item fit and person fit
-fit1a <- sirt::pcm.fit(b=b1, theta=wle$theta, data.sim.rasch )
+fit1a <- sirt::pcm.fit(b=b1, theta=wle$theta, data.sim.rasch )
fit1a$item # item fit statistic
fit1a$person # person fit statistic
@@ -279,7 +279,7 @@ Examp
# extract item parameters
b1 <- - mod2$AXsi[, -1 ]
# assess fit
-fit1a <- sirt::pcm.fit(b=b1, theta=wle$theta, dat)
+fit1a <- sirt::pcm.fit(b=b1, theta=wle$theta, dat)
fit1a$item
#############################################################################
@@ -335,7 +335,7 @@ Examp
# create some misfitting items
a[c(1,3)] <- c(.5, 1.5 )
# simulate data
-dat <- sirt::sim.raschtype( rnorm(N), b=b, fixed.a=a )
+dat <- sirt::sim.raschtype( rnorm(N), b=b, fixed.a=a )
#*** estimate Rasch model
mod1 <- TAM::tam.mml(resp=dat)
#*** assess item fit by infit and outfit statistic
@@ -347,7 +347,7 @@ Examp
library(sirt)
mod1c <- mirt::mirt( dat, model=1, itemtype="Rasch", verbose=TRUE)
print(mod1c) # model summary
-sirt::mirt.wrapper.coef(mod1c) # estimated parameters
+sirt::mirt.wrapper.coef(mod1c) # estimated parameters
fit1c <- mirt::itemfit(mod1c, method="EAP") # model fit in mirt package
# compare results of TAM and mirt
dfr <- cbind( "TAM"=fit1, "mirt"=fit1c[,-c(1:2)] )
diff --git a/docs/reference/tam.latreg.html b/docs/reference/tam.latreg.html
index 3e1046b..9c074af 100644
--- a/docs/reference/tam.latreg.html
+++ b/docs/reference/tam.latreg.html
@@ -255,7 +255,8 @@ Arg
Value
-
Subset of values of tam.mml
+
Subset of values of tam.mml
. In addition,
+means (M_post
) and standard deviations (SD_post
) are computed.
See also
See also tam.pv
for plausible value imputation.
diff --git a/docs/reference/tam.linking.html b/docs/reference/tam.linking.html
index 988a96c..a7c0588 100644
--- a/docs/reference/tam.linking.html
+++ b/docs/reference/tam.linking.html
@@ -304,8 +304,8 @@
See a
Linking or equating of item response models can be also conducted with plink
(Weeks, 2010), equate, equateIRT (Battauz, 2015), equateMultiple,
kequate and irteQ packages.
-
See also the sirt::linking.haberman
,
-sirt::invariance.alignment
and sirt::linking.haebara
functions
+
See also the sirt::linking.haberman
,
+sirt::invariance.alignment
and sirt::linking.haebara
functions
in the sirt package.
Examples
@@ -452,9 +452,9 @@ Examp
I <- 30 # number of items
b <- seq(-2,2, length=I)
# data for group 1
-dat1 <- sirt::sim.raschtype( rnorm(N, mean=0, sd=1), b=b )
+dat1 <- sirt::sim.raschtype( rnorm(N, mean=0, sd=1), b=b )
# data for group 2
-dat2 <- sirt::sim.raschtype( rnorm(N, mean=1, sd=.6), b=b )
+dat2 <- sirt::sim.raschtype( rnorm(N, mean=1, sd=.6), b=b )
# fit group 1
mod1 <- TAM::tam.mml.2pl( resp=dat1 )
diff --git a/docs/reference/tam.mml.html b/docs/reference/tam.mml.html
index aabeb63..574560b 100644
--- a/docs/reference/tam.mml.html
+++ b/docs/reference/tam.mml.html
@@ -642,7 +642,7 @@ See a
Standard errors are estimated by a rather crude (but quick) approximation.
Use tam.se
for improved standard errors.
For model comparisons see anova.tam
.
-
See sirt::tam2mirt
for converting
+
See sirt::tam2mirt
for converting
tam
objects into objects of class
mirt::mirt
in the mirt package.
@@ -2072,7 +2072,7 @@
Examp
I <- 100 # number of items
set.seed(987)
# simulate data according to the Rasch model
-dat <- sirt::sim.raschtype( stats::rnorm(N), b=seq(-2,2,len=I) )
+dat <- sirt::sim.raschtype( stats::rnorm(N), b=seq(-2,2,len=I) )
# estimate models
mod1n <- TAM::tam.mml( resp=dat, control=list( acceleration="none") ) # no acceler.
mod1y <- TAM::tam.mml( resp=dat, control=list( acceleration="Yu") ) # Yu acceler.
diff --git a/docs/reference/tam.modelfit.html b/docs/reference/tam.modelfit.html
index 95863ca..1320be4 100644
--- a/docs/reference/tam.modelfit.html
+++ b/docs/reference/tam.modelfit.html
@@ -333,7 +333,7 @@ Examp
I <- 20 # number of items
# simulate responses
library(sirt)
-dat <- sirt::sim.raschtype( stats::rnorm(N), b=seq(-1.5,1.5,len=I) )
+dat <- sirt::sim.raschtype( stats::rnorm(N), b=seq(-1.5,1.5,len=I) )
#*** estimation
mod1 <- TAM::tam.mml( dat )
summary(dat)
diff --git a/docs/reference/tam.np.html b/docs/reference/tam.np.html
index c8d3ad0..ddd9cc3 100644
--- a/docs/reference/tam.np.html
+++ b/docs/reference/tam.np.html
@@ -361,7 +361,7 @@ Examp
a <- rep(1,I)
a[c(3,8)] <- c(.5, 2)
theta <- stats::rnorm(N, sd=1)
-dat <- sirt::sim.raschtype(theta, b=b, fixed.a=a)
+dat <- sirt::sim.raschtype(theta, b=b, fixed.a=a)
#- 1PL model
mod1 <- TAM::tam.mml(dat)
diff --git a/docs/reference/tam.pv.html b/docs/reference/tam.pv.html
index c597c72..d63815d 100644
--- a/docs/reference/tam.pv.html
+++ b/docs/reference/tam.pv.html
@@ -399,7 +399,7 @@ Examp
# fix item parameters for plausible value imputation
# fix item intercepts by defining xsi.fixed
xsi0 <- mod2a$xsi$xsi
-xsi.fixed <- cbind( seq(1,length(xsi0)), xsi0 )
+xsi.fixed <- cbind( seq(1,length(xsi0)), xsi0 )
# fix item slopes using mod2$B
# matrix of latent regressors female, hisei and migra
Y <- dat[, c("female", "hisei", "migra") ]
@@ -485,7 +485,7 @@ Examp
mids1 <- miceadds::datalist2mids( datlist1 )
# fit linear regression
mod1c <- with( mids1, stats::lm( PVREAD ~ migra + hisei ) )
-summary( mice::pool(mod1c) )
+summary( mice::pool(mod1c) )
#############################################################################
# EXAMPLE 3: Multidimensional plausible value imputation
@@ -495,7 +495,7 @@ Examp
set.seed(6778)
library(mvtnorm)
N <- 1000
-Y <- cbind( stats::rnorm(N), stats::rnorm(N) )
+Y <- cbind( stats::rnorm(N), stats::rnorm(N) )
theta <- mvtnorm::rmvnorm( N, mean=c(0,0), sigma=matrix( c(1,.5,.5,1), 2, 2 ))
theta[,1] <- theta[,1] + .4 * Y[,1] + .2 * Y[,2] # latent regression model
theta[,2] <- theta[,2] + .8 * Y[,1] + .5 * Y[,2] # latent regression model
@@ -504,12 +504,12 @@ Examp
resp1 <- 1 * ( p1 > matrix( stats::runif( N*I ), nrow=N, ncol=I ) )
p1 <- stats::plogis( outer( theta[,2], seq( -2, 2, len=I ), "-" ) )
resp2 <- 1 * ( p1 > matrix( stats::runif( N*I ), nrow=N, ncol=I ) )
-resp <- cbind(resp1,resp2)
+resp <- cbind(resp1,resp2)
colnames(resp) <- paste("I", 1:(2*I), sep="")
# (2) define loading Matrix
Q <- array( 0, dim=c( 2*I, 2 ))
-Q[cbind(1:(2*I), c( rep(1,I), rep(2,I) ))] <- 1
+Q[cbind(1:(2*I), c( rep(1,I), rep(2,I) ))] <- 1
# (3) fit latent regression model
mod <- TAM::tam.mml( resp=resp, Y=Y, Q=Q )
@@ -536,7 +536,7 @@ Examp
summary(mod1, standardized=TRUE, rsquare=TRUE)
# (7) draw plausible values with tam.pv.mcmc function
-Y1 <- cbind( 1, Y )
+Y1 <- cbind( 1, Y )
pv2 <- TAM::tam.pv.mcmc( tamobj=mod, Y=Y1, n.iter=1000, n.burnin=200 )
# (8) group-specific plausible values
@@ -573,7 +573,7 @@ Examp
theta <- .5*X[,1] + .4*X[,2] + rnorm( N, sd=.5 )
# simulate item responses
itemdiff <- seq( -2, 2, length=I) # item difficulties
-dat <- sirt::sim.raschtype( theta, b=itemdiff )
+dat <- sirt::sim.raschtype( theta, b=itemdiff )
#***********************
#*** Model 0: Regression model with true variables
@@ -582,7 +582,7 @@ Examp
#***********************
#*** Model 1: latent regression model with true covariates X
-xsi.fixed <- cbind( 1:I, itemdiff )
+xsi.fixed <- cbind( 1:I, itemdiff )
mod1 <- TAM::tam.mml( dat, xsi.fixed=xsi.fixed, Y=X)
summary(mod1)
@@ -702,14 +702,14 @@ Examp
data.init$X2 <- X.err[,"X2"]
#-- imputation using the mice and miceadds package
-imp1 <- mice::mice( as.matrix(data), predictorMatrix=predictorMatrix, m=4, maxit=6,
+imp1 <- mice::mice( as.matrix(data), predictorMatrix=predictorMatrix, m=4, maxit=6,
method=imputationMethod, allow.na=TRUE,
theta=theta, like=like, data.init=data.init )
summary(imp1)
# compute linear regression
mod4a <- with( imp1, stats::lm( PVA ~ X1 + X2 ) )
-summary( mice::pool(mod4a) )
+summary( mice::pool(mod4a) )
}