-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconditional_sampling.py
380 lines (319 loc) · 13 KB
/
conditional_sampling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
import argparse
import os
import numpy as np
import torch
import yaml
import time
import matplotlib.pyplot as plt
from models.utils import create_model
from models.diffusion import Diffusion
from models.classifier_guidance_model import ClassifierGuidanceModel
from algos.reddiff import REDDIFF
from algos.scd import SCD
from algos.dps import DPS
from algos.dds import DDS
from algos.scd_full import SCDFull
from algos.scd_scalar import SCDScalar
from dataset.aapm import AAPMDataset
from torch.utils.data import TensorDataset
from radon.tomography import Tomography
torch.manual_seed(5)
device = "cuda"
def dict2namespace(config):
namespace = argparse.Namespace()
for key, value in config.items():
if isinstance(value, dict):
new_value = dict2namespace(value)
else:
new_value = value
setattr(namespace, key, new_value)
return namespace
import argparse
parser = argparse.ArgumentParser(description='conditional sampling')
parser.add_argument('--method', default="reddiff")
parser.add_argument('--train_on', default="ellipses")
parser.add_argument('--test_on', default='aapm')
parser.add_argument('--grad_term_weight', default=1.0)
parser.add_argument('--eta', default=0.2) # has no influence on reddiff
parser.add_argument('--part', default="val")
# params for inverse problems
parser.add_argument('--num_angles', default=80)
parser.add_argument('--noise_std', default=0.01)
# joint params
parser.add_argument('--lr', default=0.0001)
# params for reddiff
parser.add_argument('--sigma_x0', default=0.0001)
parser.add_argument('--awd', default=True)
parser.add_argument('--cond_awd', default=False)
parser.add_argument('--obs_weight', default=1.0)
parser.add_argument('--denoise_term_weight', default="linear")
# params for DDS
parser.add_argument('--max_iter', default=3)
parser.add_argument('--gamma', default=10)
# params for SCD
parser.add_argument("--K", default=12) # Dimension of LoRA
parser.add_argument("--r", default=8) # Number of Adaptation steps
parser.add_argument('--alphatv', default=1e-6)
parser.add_argument('--skip', default=20)
def calculate_psnr(img1, img2, max_value=1):
""""Calculating peak signal-to-noise ratio (PSNR) between two images."""
mse = np.mean((np.array(img1, dtype=np.float32) - np.array(img2, dtype=np.float32)) ** 2)
if mse == 0:
return 100
return 20 * np.log10(max_value / (np.sqrt(mse)))
def coordinator(args):
train_on = str(args.train_on) #"ellipses" # "aapm" "ellipses"
test_on = str(args.test_on) #"aapm" # "aapm" "ellipses" "lodopab"
method = str(args.method) #"reddiff"
part = str(args.part) #"val" # "test"
if train_on == "aapm":
with open(os.path.join("configs", "aapm.yml"), "r") as f:
model_config = yaml.safe_load(f)
elif train_on == "ellipses":
with open(os.path.join("configs", "diskellipses.yml"), "r") as f:
model_config = yaml.safe_load(f)
else:
raise NotImplementedError
model_config = dict2namespace(model_config)
sde = Diffusion()
model = create_model(**vars(model_config.model))
model.convert_to_fp32()
model.dtype = torch.float32
model.load_state_dict(torch.load(model_config.data.model_path, weights_only=True))
model.to("cuda")
model.eval()
if test_on == "aapm":
dataset = AAPMDataset(part=part)
elif test_on == "ellipses":
dataset = TensorDataset(torch.load(f"dataset/disk_ellipses_{part}_256.pt"))
elif test_on == "walnut":
dataset = TensorDataset(torch.load("dataset/walnut.pt", weights_only=True))
else:
raise NotImplementedError
print("Length of dataset: ", len(dataset))
classifier_model = ClassifierGuidanceModel(model=model, classifier=None, diffusion=sde, cfg=None)
if method == "reddiff":
cfg_sampl = {
"algo":
{"awd": args.awd,
"cond_awd": args.cond_awd,
"grad_term_weight": float(args.grad_term_weight),
"eta": float(args.eta),
"sigma_x0": float(args.sigma_x0),
"obs_weight": float(args.obs_weight),
"denoise_term_weight": str(args.denoise_term_weight),
"lr": float(args.lr)
},
"dataset":
{"image_size": 256,
"channels": 1},
"exp": {
"save_evolution": False
},
"forward_op": {
"num_angles": int(args.num_angles),
"sigma_y":float(args.noise_std)
}
}
elif method == "scd":
cfg_sampl = {
"algo":
{"awd": args.awd,
"eta": float(args.eta),
"gamma": float(args.gamma),
"K": int(args.K),
"r": int(args.r),
"lr": float(args.lr),
"max_iter": int(args.max_iter),
"alphatv": float(args.alphatv),
"skip": int(args.skip)
},
"dataset":
{"image_size": 256,
"channels": 1},
"exp": {
"save_evolution": False
},
"forward_op": {
"num_angles": int(args.num_angles),
"sigma_y":float(args.noise_std)
}
}
elif method == "scd_full" or method == "scd_scalar":
cfg_sampl = {
"algo":
{"awd": args.awd,
"eta": float(args.eta),
"gamma": float(args.gamma),
"K": int(args.K),
"lr": float(args.lr),
"max_iter": int(args.max_iter),
"skip": int(args.skip)
},
"dataset":
{"image_size": 256,
"channels": 1},
"exp": {
"save_evolution": False
},
"forward_op": {
"num_angles": int(args.num_angles),
"sigma_y":float(args.noise_std)
}
}
elif method == "dps":
cfg_sampl = {
"algo":
{"awd": args.awd,
"grad_term_weight": float(args.grad_term_weight),
"eta": float(args.eta),
},
"dataset":
{"image_size": 256,
"channels": 1},
"exp": {
"save_evolution": False
},
"forward_op": {
"num_angles": int(args.num_angles),
"sigma_y":float(args.noise_std)
}
}
elif method == "dds":
cfg_sampl = {
"algo":
{"awd": args.awd,
"eta": float(args.eta),
"gamma": float(args.gamma),
"max_iter": int(args.max_iter)
},
"dataset":
{"image_size": 256,
"channels": 1},
"exp": {
"save_5evolution": False
},
"forward_op": {
"num_angles": int(args.num_angles),
"sigma_y":float(args.noise_std)
}
}
else:
raise NotImplementedError
sampl_config = dict2namespace(cfg_sampl)
save_dir = os.path.join("results", train_on, test_on, method, f"angles={args.num_angles}", f'{time.strftime("%d-%m-%Y-%H-%M-%S")}')
#save_dir = "tmp"
print("save run to ", save_dir)
if not os.path.exists(save_dir):
os.makedirs(save_dir)
save_img_dir = os.path.join(save_dir, "imgs")
if not os.path.exists(save_img_dir):
os.makedirs(save_img_dir)
with open(os.path.join(save_dir, "sampl_cfg.yaml"), "w") as f:
yaml.dump(cfg_sampl, f)
forward_op = Tomography(angles=cfg_sampl["forward_op"]["num_angles"], img_width=256, device="cuda")
class ForwardModel():
def __init__(self, likelihood):
self.likelihood = likelihood
def H(self, x):
return self.likelihood.A(x)
def H_pinv(self, y):
return self.likelihood.A_dagger(y)
def H_adjoint(self, y):
return self.likelihood.A_adjoint(y)
if method == "reddiff":
sampler = REDDIFF(model=classifier_model, cfg=sampl_config, H=ForwardModel(forward_op))
elif method == "scd":
sampler = SCD(model=classifier_model, cfg=sampl_config, H=ForwardModel(forward_op))
elif method == "dps":
sampler = DPS(model=classifier_model, cfg=sampl_config, H=ForwardModel(forward_op))
elif method == "dds":
sampler = DDS(model=classifier_model, cfg=sampl_config, H=ForwardModel(forward_op))
elif method == "scd_full":
sampler = SCDFull(model=classifier_model, cfg=sampl_config, H=ForwardModel(forward_op))
elif method == "scd_scalar":
sampler = SCDScalar(model=classifier_model, cfg=sampl_config, H=ForwardModel(forward_op))
else:
raise NotImplementedError
for i in range(len(dataset)):
if test_on == "aapm":
x = dataset[i].unsqueeze(0)
y = None
elif test_on == "ellipses" or test_on == "walnut":
x = dataset[i][0].unsqueeze(0)
y = None
else:
raise NotImplementedError
x = x.to("cuda")
if y == None:
y = forward_op.A(x)
#print("y: ", y.min(), y.max())
y_noise = y + cfg_sampl["forward_op"]["sigma_y"] * torch.mean(torch.abs(y)) * torch.randn_like(y)
y_noise[y_noise < 0] = 0
x_fbp = forward_op.A_dagger(y_noise)
#x_adj = forward_op.A_adjoint(y_noise)
#print("Noisy measurements: ", y_noise.min(), y_noise.max())
#print("FBP: ", x_fbp.min(), x_fbp.max())
#print("Adjoint: ", x_adj.min(), x_adj.max())
ts = torch.arange(0, sde.num_diffusion_timesteps).to(device)
if method == "reddiff":
x0_pred, mu = sampler.sample(x, y_noise, ts = ts, y_0=y_noise )
x_mean = mu.detach().cpu()
#print(x0_pred.shape, mu.shape)
elif method == "scd":
ts = torch.arange(0, sde.num_diffusion_timesteps).to(device)[::10]#[::20]
x_mean = sampler.sample(x, y_noise, ts = ts)
model = create_model(**vars(model_config.model))
model.convert_to_fp32()
model.dtype = torch.float32
model.load_state_dict(torch.load(model_config.data.model_path, weights_only=True))
model.to("cuda")
model.eval()
classifier_model = ClassifierGuidanceModel(model=model, classifier=None, diffusion=sde, cfg=None)
# re-initialise SCD with clean model
sampler = SCD(model=classifier_model, cfg=sampl_config, H=ForwardModel(forward_op))
elif method == "scd_full":
ts = torch.arange(0, sde.num_diffusion_timesteps).to(device)[::5]#[::20]
x_mean = sampler.sample(x, y_noise, ts = ts)
elif method == "scd_scalar":
ts = torch.arange(0, sde.num_diffusion_timesteps).to(device)[::2]#[::20]
x_mean = sampler.sample(x, y_noise, ts = ts)
elif method == "dps":
_, x_mean = sampler.sample(x, y_noise, ts = ts)
elif method == "dds":
ts = torch.arange(0, sde.num_diffusion_timesteps).to(device)[::20]
print("Number of timesteps: ", len(ts))
x_mean, _ = sampler.sample(x, y_noise, ts = ts)
else:
raise NotImplementedError
psnr = calculate_psnr(x[0,0].cpu().numpy(), x_mean[0,0].detach().cpu().numpy(), max_value=1.0)
psnr_fbp = calculate_psnr(x[0,0].cpu().numpy(), x_fbp[0,0].detach().cpu().numpy(), max_value=1.0)
print("PSNR: ", psnr)
fig, (ax1, ax2, ax3) = plt.subplots(1,3,figsize=(13,6))
im = ax1.imshow(x[0,0].cpu().numpy(), cmap="gray")
ax1.set_title("Groundtruth")
fig.colorbar(im, ax=ax1)
ax2.imshow(x_fbp[0,0].cpu().numpy(), cmap="gray")
ax2.set_title("FBP, PNSR = " + str(np.round(psnr_fbp, 3)))
fig.colorbar(im, ax=ax2)
ax3.imshow(x_mean[0,0].detach().cpu().numpy(), cmap="gray")
ax3.set_title("Diffusion Model, PNSR = " + str(np.round(psnr, 3)))
fig.colorbar(im, ax=ax3)
plt.savefig(os.path.join(save_img_dir, f"reco_{i}.png"))
plt.show()
#plt.close()
np.save(os.path.join(save_img_dir, "reco_{}.npy".format(i)), x_mean.cpu().numpy())
np.save(os.path.join(save_img_dir, "gt_{}.npy".format(i)), x.cpu().numpy())
#from PIL import Image
#x_pil = (np.clip(x_mean[0,0].detach().cpu().numpy(), 0, 1) * 255).astype(np.uint8)
#image = Image.fromarray(x_pil)
#image.save(os.path.join("ellipses2walnut_scd.png"))
#x_pil = (np.clip(x[0,0].detach().cpu().numpy(), 0, 1) * 255).astype(np.uint8)
#image = Image.fromarray(x_pil)
#image.save(os.path.join("walnut.png"))
#x_pil = (np.clip(x_fbp[0,0].detach().cpu().numpy(), 0, 1) * 255).astype(np.uint8)
#image = Image.fromarray(x_pil)
#image.save(os.path.join("walnut_fbp.png"))
if __name__ == '__main__':
args = parser.parse_args()
coordinator(args)