-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path.Rhistory
512 lines (512 loc) · 24.1 KB
/
.Rhistory
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
ylab("$ million") +
ggtitle("Seasonal plot: antidiabetic drug sales")
rentabilities_xts <- as.xts(prices2$rentabilities,order.by = as.Date(rownames(prices2)))
rentabilities_xts <- as.xts(prices2$rentabilities)
rentabilities_xts
ggseasonplot(rentabilities_xts, year.labels=TRUE, year.labels.left=TRUE) +
ylab("$ million") +
ggtitle("Seasonal plot: antidiabetic drug sales")
?as.xts
rent_ts <- from.xts(prices2$rentabilities)
rent_ts <- as.ts(prices2$rentabilities)
ggseasonplot(rent_ts, year.labels=TRUE, year.labels.left=TRUE) +
ylab("") +
ggtitle("")
ggseasonplot(rent_ts, year.labels=TRUE, year.labels.left=TRUE) +
ylab("$ million") +
ggtitle("")
ggseasonplot(rent_ts, polar=TRUE) +
ylab("$ million") +
ggtitle("Polar seasonal plot: antidiabetic drug sales")
# Simularea unui proces AR(1)
ar1 <- as.ts(data$ar1)
ggtsdisplay(ar1) # un proces pur autoregresiv este considerat atunci cand
#install.packages("yfR")
#install.packages("fpp2")
#install.packages("vars")
#install.packages("tseries")
#install.packages("urca")
#install.packages("stats")
#install.packages("changepoint")
#install.packages("dplyr")
#install.packages("uroot")
#install.packages("forecast")
# Loading the libraries
library(fpp2)
library(vars)
library(tseries)
library(urca)
library(stats)
library(changepoint)
library(dplyr)
library(uroot)
library(yfR)
library(PerformanceAnalytics)
library(xts)
library(zoo)
library(tsibble)
library(readxl)
library(fpp3)
library(fpp2)
library(forecast)
library(fpp2)
library(vars)
library(tseries)
library(urca)
library(stats)
library(changepoint)
library(dplyr)
library(uroot)
library(TSA)
library(FinTS)
prices = yf_get("NVDA",first_date = "2017-01-01",last_date = "2024-04-01",freq_data = "monthly")
prices2 = data.frame(prices[,c(2,7)],row.names = 1)
#Q1 <- quantile(prices2$price_close, 0.25)
#Q3 <- quantile(prices2$price_close, 0.75)
#IQR <- Q3 - Q1
# Define the lower and upper bounds to identify outliers
#lower_bound <- Q1 - 1.5 * IQR
#upper_bound <- Q3 + 1.5 * IQR
# Filter out the outliers
#clean_nvda_data <- prices2[prices2$price_close >= lower_bound & prices2$price_close <= upper_bound, ]
# View the cleaned dataframe
#head(clean_nvda_data)
#boxplot(clean_nvda_data)
#install.packages("PerformanceAnalytics")
price_close_xts <- as.xts(prices2$price_close, order.by = as.Date(rownames(prices2)))
prices2$rentabilities <- Return.calculate(price_close_xts, method = "log")
prices2<- prices2[(-1),]
rentabilities_xts <- ?as.xts(prices2$rentabilities)
?plot
plot(prices2$rentabilities, type="l")
#y <- tsibble(
# Year = 2017:2024, #indexul seriei de timp
# Observation = c(11,12,12,12,12,12,12,3), #valorile observate din fiecare an
# index = Year
#)
rent_ts <- as.ts(prices2$rentabilities)
# Grafice de sezonalitate
ggseasonplot(rent_ts, year.labels=TRUE, year.labels.left=TRUE) +
ylab("") +
ggtitle("")
ggtsdisplay(prices2$rentabilities)
# Simularea unui proces AR(1)
ar1 <- as.ts(data$ar1)
ggtsdisplay(ar1) # un proces pur autoregresiv este considerat atunci cand
#lagurile ACF descresc lent, iar dupa primele n laguri ale PACF-ului
# identificam o scadere brusca
ggAcf(prices2$rentabilities) # forta <=> stationara
library(fpp2)
library(vars)
library(tseries)
library(urca)
library(stats)
library(changepoint)
library(dplyr)
library(uroot)
library(yfR)
library(PerformanceAnalytics)
library(xts)
library(zoo)
library(tsibble)
library(readxl)
library(fpp3)
library(fpp2)
library(forecast)
library(fpp2)
library(vars)
library(tseries)
library(urca)
library(stats)
library(changepoint)
library(dplyr)
library(uroot)
library(TSA)
library(FinTS)
prices = yf_get("NVDA",first_date = "2017-01-01",last_date = "2024-04-01",freq_data = "monthly")
prices2 = data.frame(prices[,c(2,7)],row.names = 1)
#Q1 <- quantile(prices2$price_close, 0.25)
#Q3 <- quantile(prices2$price_close, 0.75)
#IQR <- Q3 - Q1
# Define the lower and upper bounds to identify outliers
#lower_bound <- Q1 - 1.5 * IQR
#upper_bound <- Q3 + 1.5 * IQR
# Filter out the outliers
#clean_nvda_data <- prices2[prices2$price_close >= lower_bound & prices2$price_close <= upper_bound, ]
# View the cleaned dataframe
#head(clean_nvda_data)
#boxplot(clean_nvda_data)
#install.packages("PerformanceAnalytics")
price_close_xts <- as.xts(prices2$price_close, order.by = as.Date(rownames(prices2)))
prices2$rentabilities <- Return.calculate(price_close_xts, method = "log")
prices2<- prices2[(-1),]
rentabilities_xts <- ?as.xts(prices2$rentabilities)
?plot
plot(prices2$rentabilities, type="l")
#y <- tsibble(
# Year = 2017:2024, #indexul seriei de timp
# Observation = c(11,12,12,12,12,12,12,3), #valorile observate din fiecare an
# index = Year
#)
rent_ts <- as.ts(prices2$rentabilities)
# Grafice de sezonalitate
ggseasonplot(rent_ts, year.labels=TRUE, year.labels.left=TRUE) +
ylab("") +
ggtitle("")
tseries::adf.test(prices2$rentabilities) # stationara
tseries::adf.test(prices2$rentabilities, k=1) # stationara
tseries::adf.test(prices2$rentabilities, k=2) # stationara
tseries::adf.test(prices2$rentabilities, k=3) # stationara
tseries::adf.test(prices2$rentabilities, k=4) # stationara
tseries::adf.test(prices2$rentabilities, k=5) # stationara
tseries::adf.test(prices2$rentabilities, k=6) # nestationara
test_arima <- auto.arima(prices2$rentabilities,seasonal=FALSE)
summary(test_arima)
coeftest(test_arima)
# Testearea reziduurilor modelului AR1
residuals_ar1 <- residuals(test_arima)
ggtsdisplay(residuals_ar1) # nu avem autocorelatie in reziduuri conform ACF
# Corelograma seriilor de timp este o diagrama a statisticilor de corelatie
# Functia ggtsdisplay ne ofera graficul seriei, ACF si PACF in acelasi plot
ggtsdisplay(goog200)
ggtsdisplay(diff(goog200))
test_arima <- auto.arima(prices2$rentabilities,seasonal=FALSE)
summary(test_arima)
coeftest(test_arima)
# Testearea reziduurilor modelului AR1
residuals_ar1 <- residuals(test_arima)
ggtsdisplay(residuals_ar1) # nu avem autocorelatie in reziduuri conform ACF
Box.test(residuals_ar1, lag=1,type="Lj") # nu avem autocorelare in reziduuri
jarque.bera.test(residuals_ar1)
ArchTest(residuals_ar1,lag=1)
dim(prices2$rentabilities)
setwd("~/AstroNet Projects/Proiecte Personale/Junior Data Engineer Assignment")
# Create data frames for all three csv files
df_fb <- read.csv("facebook_dataset.csv")
df_google <- read.csv("google_dataset.csv")
df_website <- read.csv("website_dataset.csv")
df_fb
# For each data frame, identify all the column names
colnames(df_fb)
# For each data frame, identify all the column names
dim(colnames(df_fb))
# For each data frame, identify all the column names
colnames(df_fb)
colnames(df_google)
colnames(df_website)
# For the website data frame, if the second column contains the separator ';', combine the first two columns into one by using " " as a separator. If else, use "," as a separator.
df_website[,2] <- ifelse(grepl(";", df_website[,2]), paste(df_website[,1], df_website[,2], sep = " "), paste(df_website[,1], df_website[,2], sep = ","))
# Create data frames for all three csv files
df_fb <- read.csv("facebook_dataset.csv")
df_google <- read.csv("google_dataset.csv")
df_website <- read.csv("website_dataset.csv")
# For the website data frame, if the second column contains the separator ';', combine the first two columns into one by using " " as a separator. If else, use "," as a separator.
df_website[,2] <- ifelse(grepl(";", df_website[,2]), paste(df_website[,1], df_website[,2], sep = " "), paste(df_website[,1], df_website[,2], sep = ","))
df_website[,2]
# Create data frames for all three csv files
df_fb <- read.csv("facebook_dataset.csv")
df_google <- read.csv("google_dataset.csv")
df_website <- read.csv("website_dataset.csv")
# For each data frame, identify all the column names
colnames(df_fb)
colnames(df_google)
colnames(df_website)
str(df_website)
# For the website data frame, the separator is a semicolon
df_website <- read.csv("website_dataset.csv", sep = ";")
colnames(df_website)
df_website[13:15,]
df_website[10:15,]
# All the columns that should remain are: "domain", "name", "categories", "phone", "country_name", "city_name", "region_name", "address"
# For df_fb:
# Rename "city" to "city_name"
colnames(df_fb)[colnames(df_fb) == "city"] <- "city_name"
# For df_google:
# Rename "category" to "categories"
colnames(df_google)[colnames(df_google) == "category"] <- "categories"
# Rename "city" to "city_name"
colnames(df_google)[colnames(df_google) == "city"] <- "city_name"
# For df_website:
# Rename "root_domain" to "domain"
colnames(df_website)[colnames(df_website) == "root_domain"] <- "domain"
# Rename "legal_name" to "name"
colnames(df_website)[colnames(df_website) == "legal_name"] <- "name"
# Rename "category" to "categories"
colnames(df_website)[colnames(df_website) == "category"] <- "categories"
# Rename "main_city" to "city_name"
colnames(df_website)[colnames(df_website) == "main_city"] <- "city_name"
# Rename "main_country" to "country_name"
colnames(df_website)[colnames(df_website) == "main_country"] <- "country_name"
# Rename "main_region" to "region_name"
colnames(df_website)[colnames(df_website) == "main_region"] <- "region_name"
# The biggest dataset is google, so the resulting data frame will be based on the google data frame. Extract the columns that are common to all three data frames
df <- df_google[,c("domain", "name", "categories", "phone", "country_name", "city_name", "region_name", "address")]
# Append the rows from the facebook and website data frames that are not already in the resulting data frame
df <- rbind(df, df_fb[,c("domain", "name", "categories", "phone", "country_name", "city_name", "region_name", "address")])
df <- rbind(df, df_website[,c("domain", "name", "categories", "phone", "country_name", "city_name", "region_name", "address")])
df <- rbind(df, df_website[,c("domain", "name", "categories", "phone", "country_name", "city_name", "region_name")])
# The biggest dataset is google, so the resulting data frame will be based on the google data frame. Extract the columns that are common to all three data frames
df <- df_google[,c("domain", "name", "categories", "phone", "country_name", "city_name", "region_name", "address")]
# Append the rows from the facebook and website data frames that are not already in the resulting data frame
df <- rbind(df, df_fb[,c("domain", "name", "categories", "phone", "country_name", "city_name", "region_name", "address")])
df <- rbind(df, df_website[,c("domain", "name", "categories", "phone", "country_name", "city_name", "region_name")])
# Show the first 3 rows of df_website
df_website[1:3,]
# Add the "address" column to the website data frame
df_website$address <- NA
# The biggest dataset is google, so the resulting data frame will be based on the google data frame. Extract the columns that are common to all three data frames
df <- df_google[,c("domain", "name", "categories", "phone", "country_name", "city_name", "region_name", "address")]
# Append the rows from the facebook and website data frames that are not already in the resulting data frame
df <- rbind(df, df_fb[,c("domain", "name", "categories", "phone", "country_name", "city_name", "region_name", "address")])
df <- rbind(df, df_website[,c("domain", "name", "categories", "phone", "country_name", "city_name", "region_name")])
# The biggest dataset is google, so the resulting data frame will be based on the google data frame. Extract the columns that are common to all three data frames
df <- df_google[,c("domain", "name", "categories", "phone", "country_name", "city_name", "region_name", "address")]
# Append the rows from the facebook and website data frames that are not already in the resulting data frame
df <- rbind(df, df_fb[,c("domain", "name", "categories", "phone", "country_name", "city_name", "region_name", "address")])
df <- rbind(df, df_website[,c("domain", "name", "categories", "phone", "country_name", "city_name", "region_name", "address")])
df_website
# Rename "category" to "categories"
colnames(df_website)[colnames(df_website) == "s_category"] <- "categories"
# Rename "main_city" to "city_name"
colnames(df_website)[colnames(df_website) == "main_city"] <- "city_name"
# Rename "main_country" to "country_name"
colnames(df_website)[colnames(df_website) == "main_country"] <- "country_name"
# Rename "main_region" to "region_name"
colnames(df_website)[colnames(df_website) == "main_region"] <- "region_name"
# Add the "address" column to the website data frame
df_website$address <- NA
# The biggest dataset is google, so the resulting data frame will be based on the google data frame. Extract the columns that are common to all three data frames
df <- df_google[,c("domain", "name", "categories", "phone", "country_name", "city_name", "region_name", "address")]
# Append the rows from the facebook and website data frames that are not already in the resulting data frame
df <- rbind(df, df_fb[,c("domain", "name", "categories", "phone", "country_name", "city_name", "region_name", "address")])
df <- rbind(df, df_website[,c("domain", "name", "categories", "phone", "country_name", "city_name", "region_name", "address")])
df
setwd("~/AstroNet Projects/Proiecte Personale/Junior Data Engineer Assignment")
# Create data frames for all three csv files
df_fb <- read.csv("facebook_dataset.csv")
df_google <- read.csv("google_dataset.csv")
# For the website data frame, the separator is a semicolon
df_website <- read.csv("website_dataset.csv", sep = ";")
# PREPROCESSING
# For each data frame, identify all the column names
colnames(df_fb)
colnames(df_google)
colnames(df_website)
str(df_website)
df_website[10:15,]
# If a row has more than 4 missing values, remove it
df_fb <- df_fb[rowSums(is.na(df_fb)) <= 4,]
df_google <- df_google[rowSums(is.na(df_google)) <= 4,]
df_website <- df_website[rowSums(is.na(df_website)) <= 4,]
# All the columns that should remain are: "domain", "name", "categories", "phone", "country_name", "city_name", "region_name", "address"
# For df_fb:
# Rename "city" to "city_name"
colnames(df_fb)[colnames(df_fb) == "city"] <- "city_name"
# For df_google:
# Rename "category" to "categories"
colnames(df_google)[colnames(df_google) == "category"] <- "categories"
# Rename "city" to "city_name"
colnames(df_google)[colnames(df_google) == "city"] <- "city_name"
# For df_website:
# Rename "root_domain" to "domain"
colnames(df_website)[colnames(df_website) == "root_domain"] <- "domain"
# Rename "legal_name" to "name"
colnames(df_website)[colnames(df_website) == "legal_name"] <- "name"
# Rename "category" to "categories"
colnames(df_website)[colnames(df_website) == "s_category"] <- "categories"
# Rename "main_city" to "city_name"
colnames(df_website)[colnames(df_website) == "main_city"] <- "city_name"
# Rename "main_country" to "country_name"
colnames(df_website)[colnames(df_website) == "main_country"] <- "country_name"
# Rename "main_region" to "region_name"
colnames(df_website)[colnames(df_website) == "main_region"] <- "region_name"
# Add the "address" column to the website data frame
df_website$address <- NA
# The biggest dataset is google, so the resulting data frame will be based on the google data frame. Extract the columns that are common to all three data frames
df <- df_google[,c("domain", "name", "categories", "phone", "country_name", "city_name", "region_name", "address")]
# Append the rows from the facebook and website data frames that are not already in the resulting data frame
df <- rbind(df, df_fb[,c("domain", "name", "categories", "phone", "country_name", "city_name", "region_name", "address")])
df <- rbind(df, df_website[,c("domain", "name", "categories", "phone", "country_name", "city_name", "region_name", "address")])
# Remove duplicates
df <- unique(df)
df
df_google
setwd("~/AstroNet Projects/Proiecte Personale/Junior Data Engineer Assignment")
# Create data frames for all three csv files
df_fb <- read.csv("facebook_dataset.csv")
df_google <- read.csv("google_dataset.csv")
# For the website data frame, the separator is a semicolon
df_website <- read.csv("website_dataset.csv", sep = ";")
df_google[3878:3882,]
df_google[3878,]
df_google <- read.csv("google_dataset.csv", sep = ",", fill = TRUE, quote = "")
df_google <- read.csv("google_dataset.csv", sep = ",", fill = TRUE, quote = "", header=FALSE)
df_google
setwd("~/AstroNet Projects/Proiecte Personale/Junior Data Engineer Assignment")
# Create data frames for all three csv files
df_fb <- read.csv("facebook_dataset_modified.csv")
df_google <- read.csv("google_dataset_modified.csv")
# For the website data frame, the separator is a semicolon
df_website <- read.csv("website_dataset.csv", sep = ";")
# For each data frame, identify all the column names
colnames(df_fb)
colnames(df_google)
colnames(df_website)
# If a row has more than 4 missing values, remove it
df_fb <- df_fb[rowSums(is.na(df_fb)) <= 4,]
df_google <- df_google[rowSums(is.na(df_google)) <= 4,]
df_website <- df_website[rowSums(is.na(df_website)) <= 4,]
# For df_fb:
# Rename "city" to "city_name"
colnames(df_fb)[colnames(df_fb) == "city"] <- "city_name"
# For df_google:
# Rename "category" to "categories"
colnames(df_google)[colnames(df_google) == "category"] <- "categories"
# Rename "city" to "city_name"
colnames(df_google)[colnames(df_google) == "city"] <- "city_name"
# For df_website:
# Rename "root_domain" to "domain"
colnames(df_website)[colnames(df_website) == "root_domain"] <- "domain"
# Rename "legal_name" to "name"
colnames(df_website)[colnames(df_website) == "legal_name"] <- "name"
# Rename "category" to "categories"
colnames(df_website)[colnames(df_website) == "s_category"] <- "categories"
# Rename "main_city" to "city_name"
colnames(df_website)[colnames(df_website) == "main_city"] <- "city_name"
# Rename "main_country" to "country_name"
colnames(df_website)[colnames(df_website) == "main_country"] <- "country_name"
# Rename "main_region" to "region_name"
colnames(df_website)[colnames(df_website) == "main_region"] <- "region_name"
# Add the "address" column to the website data frame
df_website$address <- NA
# The biggest dataset is google, so the resulting data frame will be based on the google data frame. Extract the columns that are common to all three data frames
df <- df_google[,c("domain", "name", "categories", "phone", "country_name", "city_name", "region_name", "address")]
# Append the rows from the facebook and website data frames that are not already in the resulting data frame
df <- rbind(df, df_fb[,c("domain", "name", "categories", "phone", "country_name", "city_name", "region_name", "address")])
df <- rbind(df, df_website[,c("domain", "name", "categories", "phone", "country_name", "city_name", "region_name", "address")])
# Remove duplicates
df <- unique(df)
df
setwd("~/AstroNet Projects/Proiecte Personale/Junior Data Engineer Assignment")
# We create data frames for all three csv files
df_fb <- read.csv("facebook_dataset_modified.csv")
df_google <- read.csv("google_dataset_modified.csv")
# For the website data frame, the separator is a semicolon
df_website <- read.csv("website_dataset.csv", sep = ";")
# PREPROCESSING ----
# For each data frame, identify all the column names
colnames(df_fb)
colnames(df_google)
colnames(df_website)
# All the columns that should remain are: "domain", "name", "categories",
# "phone", "country_name", "city_name", "region_name", "address"
# I chose these columns because all of them can be found in at least two
# of the 3 datasets and they convey the most relevant information.
# In order to standardize the data, we need to choose our columns carefully
# and rename them to be sure that they function correctly when we join them.
# For df_fb:
# Rename "city" to "city_name"
colnames(df_fb)[colnames(df_fb) == "city"] <- "city_name"
# For df_google:
# Rename "category" to "categories"
colnames(df_google)[colnames(df_google) == "category"] <- "categories"
# Rename "city" to "city_name"
colnames(df_google)[colnames(df_google) == "city"] <- "city_name"
# For df_website:
# Rename "root_domain" to "domain"
colnames(df_website)[colnames(df_website) == "root_domain"] <- "domain"
# Rename "legal_name" to "name"
colnames(df_website)[colnames(df_website) == "legal_name"] <- "name"
# Rename "category" to "categories"
colnames(df_website)[colnames(df_website) == "s_category"] <- "categories"
# Rename "main_city" to "city_name"
colnames(df_website)[colnames(df_website) == "main_city"] <- "city_name"
# Rename "main_country" to "country_name"
colnames(df_website)[colnames(df_website) == "main_country"] <- "country_name"
# Rename "main_region" to "region_name"
colnames(df_website)[colnames(df_website) == "main_region"] <- "region_name"
# Add the "address" column to the website data frame
df_website$address <- NA
# The address column will be null for the data coming from the website, but
# this is a necessary drawback in order to increase final dataset size.
# ASSEMBLING THE FINAL DATASET ----
# The biggest dataset is google, so the resulting data frame will be based on
# the google data frame.
# We extract the columns that are common to all three data frames
df <- df_google[,c("domain", "name", "categories", "phone", "country_name",
"city_name", "region_name", "address")]
# We append the rows from the facebook and website data frames that are not
# already in the resulting data frame
df <- rbind(df, df_fb[,c("domain", "name", "categories", "phone",
"country_name", "city_name",
"region_name", "address")])
df <- rbind(df, df_website[,c("domain", "name", "categories", "phone",
"country_name", "city_name", "region_name",
"address")])
# We remove potential duplicates
df <- unique(df)
# If a row has more than 4 missing values, we remove it for lack of information.
df <- df[rowSums(is.na(df)) <= 4,]
df
setwd("~/AstroNet Projects/Proiecte Personale/Junior Data Engineer Assignment")
# We create data frames for all three csv files
df_fb <- read.csv("facebook_dataset_modified.csv")
df_google <- read.csv("google_dataset_modified.csv")
# For the website data frame, the separator is a semicolon
df_website <- read.csv("website_dataset.csv", sep = ";")
# PREPROCESSING ----
# For each data frame, identify all the column names
colnames(df_fb)
colnames(df_google)
colnames(df_website)
# All the columns that should remain are: "domain", "name", "categories",
# "phone", "country_name", "city_name", "region_name", "address"
# I chose these columns because all of them can be found in at least two
# of the 3 datasets and they convey the most relevant information.
# In order to standardize the data, we need to choose our columns carefully
# and rename them to be sure that they function correctly when we join them.
# For df_fb:
# Rename "city" to "city_name"
colnames(df_fb)[colnames(df_fb) == "city"] <- "city_name"
# For df_google:
# Rename "category" to "categories"
colnames(df_google)[colnames(df_google) == "category"] <- "categories"
# Rename "city" to "city_name"
colnames(df_google)[colnames(df_google) == "city"] <- "city_name"
# For df_website:
# Rename "root_domain" to "domain"
colnames(df_website)[colnames(df_website) == "root_domain"] <- "domain"
# Rename "legal_name" to "name"
colnames(df_website)[colnames(df_website) == "legal_name"] <- "name"
# Rename "category" to "categories"
colnames(df_website)[colnames(df_website) == "s_category"] <- "categories"
# Rename "main_city" to "city_name"
colnames(df_website)[colnames(df_website) == "main_city"] <- "city_name"
# Rename "main_country" to "country_name"
colnames(df_website)[colnames(df_website) == "main_country"] <- "country_name"
# Rename "main_region" to "region_name"
colnames(df_website)[colnames(df_website) == "main_region"] <- "region_name"
# Add the "address" column to the website data frame
df_website$address <- NA
# The address column will be null for the data coming from the website, but
# this is a necessary drawback in order to increase final dataset size.
# ASSEMBLING THE FINAL DATASET ----
# The biggest dataset is google, so the resulting data frame will be based on
# the google data frame.
# We extract the columns that are common to all three data frames
df <- df_google[,c("domain", "name", "categories", "phone", "country_name",
"city_name", "region_name", "address")]
# We append the rows from the facebook and website data frames that are not
# already in the resulting data frame
df <- rbind(df, df_fb[,c("domain", "name", "categories", "phone",
"country_name", "city_name",
"region_name", "address")])
df <- rbind(df, df_website[,c("domain", "name", "categories", "phone",
"country_name", "city_name", "region_name",
"address")])
# We remove potential duplicates
df <- unique(df)
# If a row has more than 4 missing values, we remove it for lack of information.
df <- df[rowSums(is.na(df)) <= 4,]
# Output the final data frame to a csv file
write.csv(df, "final_dataset.csv", row.names = FALSE)