-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfusion_matrix.py
80 lines (65 loc) · 2.61 KB
/
confusion_matrix.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import numpy as np
#Confustion matrix format: first index is TRUE VALUE, second index is PREDICTED VALUE
TRUE_NEGATIVE = (0, 0)
FALSE_NEGATIVE = (1, 0)
FALSE_POSITIVE = (0, 1)
TRUE_POSITIVE = (1, 1)
ACTUAL_POSITIVES = TRUE_POSITIVE, FALSE_NEGATIVE
ACTUAL_NEGATIVES = TRUE_NEGATIVE, FALSE_POSITIVE
WRONG_ANSWERS = FALSE_POSITIVE, FALSE_NEGATIVE
def print_raw_accuracy(CM):
total_data = np.sum(CM)
accuracy = (CM[TRUE_POSITIVE] + CM[TRUE_NEGATIVE]) / total_data
ans = f'Total examples {total_data}; accuracy {accuracy: 3.4}, '
if CM[TRUE_POSITIVE] + CM[FALSE_POSITIVE] > 0:
precision = CM[TRUE_POSITIVE] / (CM[TRUE_POSITIVE] + CM[FALSE_POSITIVE])
ans += f'Precision {precision:3.4}, False alarm rate {CM[FALSE_POSITIVE]/(CM[TRUE_POSITIVE] + CM[FALSE_POSITIVE])}, '
else:
ans += f'Precision undefined: no positive answers, '
if CM[TRUE_POSITIVE] + CM[FALSE_NEGATIVE] > 0:
recall = CM[TRUE_POSITIVE] / (CM[FALSE_NEGATIVE] + CM[TRUE_POSITIVE])
ans += f'Recall {recall:3.4}, '
else:
ans += f'Recall undefined, '
if CM[TRUE_POSITIVE] + np.sum(CM[WRONG_ANSWERS]) > 0:
f1score = 2 * CM[TRUE_POSITIVE] / (2 * CM[TRUE_POSITIVE] + np.sum(CM[WRONG_ANSWERS]))
ans += f'F1score {f1score:3.4} '
else:
ans += f'F1score undefined: no positive data points '
ans += '.'
print(ans)
return ans
def print_event_accuracy(CM):
"""
Interpret confusion matrix as event-detection matrix. In this case, cell for TRUE_NEGATIVE will be assumed zero.
:param CM:
:return:
"""
assert CM[TRUE_NEGATIVE] == 0, 'Provided matrix is not event-accuracy matrix'
total_events = CM[ACTUAL_POSITIVES].sum()
ans = f'Total events, {total_events}, '
if total_events > 0:
ans += f'detected, {CM[TRUE_POSITIVE]} , {CM[TRUE_POSITIVE] / total_events:3.4}, '
ans += f'missed, {CM[FALSE_NEGATIVE]} , {CM[FALSE_NEGATIVE] / total_events:3.4}, '
ans += f'false alarms, {CM[FALSE_POSITIVE]} , {CM[FALSE_POSITIVE] / total_events:3.4} '
else:
ans += f'false alarms, {CM[FALSE_POSITIVE]}, (no valid events for ratio)'
print(ans)
return ans
def to_mongo(cm:np.ndarray):
def conv(x):
if int(x) == x:
return int(x)
else:
return float(x)
return [conv(i) for i in cm.flatten()]
def from_mongo(arr):
return np.array(arr).reshape([2, 2])
if __name__ == "__main__":
cm = np.array([[50., 17.],
[3., 60.]])
print(cm[FALSE_POSITIVE])
print(cm[FALSE_NEGATIVE])
print_raw_accuracy(cm)
cm[TRUE_NEGATIVE] = 0
print_event_accuracy(cm)