-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrun.py
291 lines (258 loc) · 12.7 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
# Slightly modified from Google BiT source code (original license below)
#
# Copyright 2020 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""Fine-tune a BiT model on some downstream dataset."""
#!/usr/bin/env python3
# coding: utf-8
import os
import time
import random
import math
from os.path import join as pjoin # pylint: disable=g-importing-member
from datetime import datetime
import numpy as np
import torch
import torchvision as tv
import utils
import utils.logger
import utils.lbtoolbox as lb
import utils.multi_attr_dataset as mads
import utils.train_test_common as train_test_common
import utils.datasets.load as dsload
import utils.datasets.metadata as metadata
import models.architecture as architecture
import models.hyper_params as hyper_params
import models.acquisition as acq
def make_datasets(dataset_name, dataset_path, target_attr, logger, seed=None, train_tx=None, val_tx=None):
logger.info("Loading datasets...")
train_set, train_set_static, in_sample_val_set, out_sample_val_set, test_set = dsload.load(dataset_name, dataset_path, seed, train_tx, val_tx)
train_sets = {"full": train_set, "static": train_set_static}
valid_sets = {"in_sample": in_sample_val_set, "out_sample": out_sample_val_set}
return train_sets, valid_sets
def active_train(model,
acquisitor,
num_query_total, query_schedule,
train_set, attr, train_batch_size, train_batch_split, num_workers,
optim, base_lr, device, chrono, logger, early_stopper,
valid_sets, eval_every_acq_round=1,
seed_set=[],
temp_path_to_save_fresh_model=None):
logger.info("Starting active training...")
logger.info(f"Full training set size: {len(train_set)}")
assert (len(acquisitor.dataset) == len(train_set))
pool_size = len(train_set) if acquisitor.down_sample is None else acquisitor.down_sample
logger.info(f"Pool size for each acquisition: {pool_size}")
acquired_examples = seed_set.copy()
overall_accuracy_over_time = {key: {} for key in valid_sets}
group_accuracy_over_time = {key: {} for key in valid_sets}
## Saving the initial state of the model, which we return to at the beginning of every acquisition loop
if temp_path_to_save_fresh_model is None:
temp_path_to_save_fresh_model = "temp_initial_model_" + datetime.now().strftime("%F_%H%M%S") + ".pth"
torch.save(model.state_dict(), temp_path_to_save_fresh_model)
acq_round = 0
while True:
# Load fresh model
logger.info(f"Resetting model to initial state...")
model.load_state_dict(torch.load(temp_path_to_save_fresh_model))
# Train from acquired_examples
active_train_set = mads.Subset(train_set, acquired_examples)
with chrono.measure("active learning"):
train_test_common.train(model, active_train_set, attr, train_batch_size,
train_batch_split, num_workers, optim, base_lr, device,
chrono, logger, early_stopper)
# Perform testing every so often
if acq_round % eval_every_acq_round == 0:
for key in valid_sets:
logger.info(f"Evaluating on {key} validation set...")
results = train_test_common.test(model,
valid_sets[key],
attr,
[1],
train_batch_size,
num_workers,
device,
chrono,
logger)
overall_accuracy_over_time[key][len(acquired_examples)] = results[1][1]
group_accuracy_over_time[key][len(acquired_examples)] = results[3][1]
# Perform acquisition
acq_round += 1
num_query = min(next(query_schedule), num_query_total-(len(acquired_examples)-len(seed_set)))
if num_query > 0:
acquisitor.set_model(model)
logger.info(f"Acquiring {num_query} more examples...")
with chrono.measure("acquisition"):
indices = acquisitor(num_query, acquired_examples)
acquired_examples.extend(indices)
logger.info(f"Now training on {len(acquired_examples)} examples: {acquired_examples}")
else:
break
os.remove(temp_path_to_save_fresh_model)
return overall_accuracy_over_time, group_accuracy_over_time, acquired_examples
def main(args):
if args.seed is not None:
torch.manual_seed(args.seed)
random.seed(args.seed)
np.random.seed(args.seed)
# Set up device, chrono, logger
torch.backends.cudnn.benchmark = True
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
chrono = lb.Chrono()
logger = utils.logger.setup_logger(args)
logger.info(f"Device is {device}")
logger.info("Initializing model...")
ds_meta = metadata.known_datasets[args.dataset]
target_attr_idx = ds_meta["attr_to_idx"][args.target_attr]
num_classes = ds_meta["num_classes"][target_attr_idx]
model = architecture.KNOWN_MODELS[args.model](head_size=num_classes, zero_head=True)
is_clip_model = (args.model[:4] == "CLIP")
is_vit_model = (args.model == "ViT")
if is_vit_model:
model.set_device(device)
if args.no_pretrain:
if is_clip_model:
logger.info("no_pretrain mode has not been implemented for CLIP models")
raise NotImplementedError
else:
logger.info("Using randomly initialized weights")
else:
if is_clip_model:
logger.info("Model loaded using CLIP API")
elif is_vit_model:
logger.info("Model loaded from Huggingface")
else:
logger.info(f"Loading model from {args.model}.npz")
model.load_from(np.load(f"{args.model}.npz"))
# Make datasets
with chrono.measure("make datasets"):
if is_clip_model:
train_tx = model.clip_preprocess
val_tx = model.clip_preprocess
else:
train_tx = None
val_tx = None
# train_sets, valid_sets = make_datasets(args.dataset, args.datadir,
# args.target_attr, args.passive_examples_per_class, logger)
train_sets, valid_sets = make_datasets(args.dataset, args.datadir, args.target_attr, logger, args.seed, train_tx, val_tx)
logger.info("Moving model onto all GPUs")
model = torch.nn.DataParallel(model)
# optim = torch.optim.SGD(model.module.head.conv.parameters(), lr=0.003, momentum=0.9) # Note: no weight-decay!
optim = torch.optim.SGD(model.parameters(), lr=args.base_lr, momentum=0.9)
# optim = torch.optim.Adam(model.parameters(), lr=args.base_lr, eps=1e-4)
model = model.to(device)
optim.zero_grad()
# Set up early stopper
# Note that we are not using batch split here, no matter what args.batch_split is
# This is because the validation process does not take as much memory
ks = [k for k in args.eval_topk if k < num_classes] # can't ask for top-k accuracy if k >= num_classes
model_save_path = pjoin(args.logdir, args.name, "bit.pth.tar")
if args.stop_from_train is not None:
early_stopper = train_test_common.TrainLossEarlyStopper(
model, model_save_path,
relative_threshold=args.stop_from_train,
# max_step = args.active_max_step_each
)
else:
train_valid_set = valid_sets[args.train_valid_split]
if train_valid_set is None:
raise NotImplementedError(f"This dataset does not have an {args.train_valid_split} validation split")
logger.info(f"The training loops use an {args.train_valid_split} validation set with {len(train_valid_set)} examples.")
early_stopper = train_test_common.ValidationEarlyStopper(
model, model_save_path,
args.early_stop_check_every, train_valid_set, args.target_attr, ks,
args.batch, args.workers,
device, chrono, logger,
args.active_max_step_each, args.early_stop_patience
)
# Passive training
# passive_train(model,
# train_sets["few_shot"], args.target_attr, args.batch, args.batch_split, args.workers,
# optim, args.base_lr, device, chrono, logger, early_stopper)
# Set up validation sets
test_valid_sets = {key: valid_sets[key] for key in args.valid_splits}
logger.info(f"Running evaluation on {len(args.valid_splits)} validation set(s):")
for key in args.valid_splits:
if test_valid_sets[key] is None:
raise NotImplementedError(f"This dataset does not have an {key} validation split")
logger.info(f"{key} with {len(test_valid_sets[key])} examples")
# Active training
acq_func = acq.known_acquisition_functions[args.acq_func]
acquisitor = acq.Acquisitor(model,
acq_func,
train_sets["static"],
device,
args.acq_compute_batch_size,
args.workers,
args.down_sample,
args.seed)
num_query_total = args.acq_num_query_total
# Exponentially increasing query schedule
def exp_query_schedule(initial, multiplier):
state = initial
while True:
yield math.floor(state)
state *= multiplier
query_schedule = exp_query_schedule(args.acq_num_query_initial, args.acq_num_query_multiplier)
if args.stop_from_train is None:
early_stopper.max_step = args.active_max_step_each #early_stopper can be reused, just need to update parameters
temp_path_to_save_fresh_model = pjoin(args.logdir, args.name, "temp_initial_model.pth")
# build a seed set
if args.seed_set_is_balanced:
if args.seed_set_size % num_classes != 0:
raise ValueError(f"Cannot make a balanced seed set: The seed set size ({args.seed_set_size}) is not divisible by the number of classes ({num_classes}).")
seed_examples_per_class = args.seed_set_size // num_classes
logger.info(f"Looking for {seed_examples_per_class} examples per class for few shot learning...")
logger.info(f"This can take a while for some datasets e.g. iwildcam...")
seed_set = mads.find_few_shot_subset(train_sets["full"], args.target_attr, seed_examples_per_class,seed=args.seed).indices
else:
temp_rng = np.random.default_rng(args.seed)
seed_set = temp_rng.choice(len(train_sets["full"]), size=args.seed_set_size, replace=False).tolist()
overall_accuracy_over_time, group_accuracy_over_time, acquired_examples = active_train(
model,
acquisitor, num_query_total, query_schedule,
train_sets["full"], args.target_attr, args.batch, args.batch_split, args.workers,
optim, args.base_lr, device, chrono, logger, early_stopper,
test_valid_sets, eval_every_acq_round=args.eval_every_acq_round,
seed_set=seed_set,
temp_path_to_save_fresh_model=temp_path_to_save_fresh_model,
)
# Run evaluation again, collect final results
overall_loss = {}
overall_topks_accuracy = {}
group_loss = {}
group_topks_accuracy = {}
for key in args.valid_splits:
logger.info(f"Running evaluation on {key} validation set with {len(test_valid_sets[key])} examples...")
overall_loss[key], overall_topks_accuracy[key], group_loss[key], group_topks_accuracy[key] = train_test_common.test(
model, test_valid_sets[key], args.target_attr, ks, args.batch, args.workers, device, chrono, logger
)
logger.info(f"Timings:\n{chrono}")
return (
overall_loss, overall_topks_accuracy, overall_accuracy_over_time,
group_loss, group_topks_accuracy, group_accuracy_over_time,
acquired_examples,
)
if __name__== "__main__":
parser = hyper_params.init_argparser(architecture.KNOWN_MODELS.keys())
hyper_params.add_active_train_args(parser)
args = parser.parse_args()
(
overall_loss, overall_topks_accuracy, overall_accuracy_over_time,
group_loss, group_topks_accuracy, group_accuracy_over_time,
acquired_examples,
) = main(args)
# do something with results here e.g. print(overall_loss["out_sample"])
print("Done!")