-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_consistency.py
288 lines (231 loc) · 10.9 KB
/
train_consistency.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
import argparse
import time
from typing import Optional
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.optim import Optimizer
from torch.utils.data import DataLoader
from architectures import ARCHITECTURES
from datasets import DATASETS
from third_party.smoothadv import Attacker
from train_utils import AverageMeter, accuracy, log, requires_grad_, test
from train_utils import prologue
from consistency import consistency_loss
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
parser = argparse.ArgumentParser(description='PyTorch ImageNet Training')
parser.add_argument('dataset', type=str, choices=DATASETS)
parser.add_argument('arch', type=str, choices=ARCHITECTURES)
parser.add_argument('--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument('--epochs', default=150, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--batch', default=256, type=int, metavar='N',
help='batchsize (default: 256)')
parser.add_argument('--lr', '--learning-rate', default=0.1, type=float,
help='initial learning rate', dest='lr')
parser.add_argument('--lr_step_size', type=int, default=50,
help='How often to decrease learning by gamma.')
parser.add_argument('--gamma', type=float, default=0.1,
help='LR is multiplied by gamma on schedule.')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--weight-decay', '--wd', default=1e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)')
parser.add_argument('--noise_sd', default=0.0, type=float,
help="standard deviation of Gaussian noise for data augmentation")
parser.add_argument('--print-freq', default=10, type=int,
metavar='N', help='print frequency (default: 10)')
parser.add_argument('--id', default=None, type=int,
help='experiment id, `randint(10000)` if None')
#####################
# Options added by Salman et al. (2019)
parser.add_argument('--resume', action='store_true',
help='if true, tries to resume training from existing checkpoint')
parser.add_argument('--pretrained-model', type=str, default='',
help='Path to a pretrained model')
#####################
parser.add_argument('--num-noise-vec', default=1, type=int,
help="number of noise vectors. `m` in the paper.")
parser.add_argument('--lbd', default=10., type=float)
parser.add_argument('--eta', default=0.5, type=float)
# Options when SmoothAdv is used (Salman et al., 2019)
parser.add_argument('--adv-training', action='store_true')
parser.add_argument('--epsilon', default=512, type=float)
parser.add_argument('--num-steps', default=4, type=int)
parser.add_argument('--warmup', default=10, type=int, help="Number of epochs over which "
"the maximum allowed perturbation increases linearly "
"from zero to args.epsilon.")
args = parser.parse_args()
if args.adv_training:
mode = f"salman_{args.epsilon}_{args.num_steps}_{args.warmup}"
else:
mode = f"cohen"
args.outdir = f"logs/{args.dataset}/consistency/{mode}/num_{args.num_noise_vec}/lbd_{args.lbd}/eta_{args.eta}/noise_{args.noise_sd}"
args.epsilon /= 256.0
def main():
train_loader, test_loader, criterion, model, optimizer, scheduler, \
starting_epoch, logfilename, model_path, device, writer = prologue(args)
if args.adv_training:
attacker = SmoothAdv_PGD(steps=args.num_steps, device=device, max_norm=args.epsilon)
else:
attacker = None
for epoch in range(starting_epoch, args.epochs):
if args.adv_training:
attacker.max_norm = np.min([args.epsilon, (epoch + 1) * args.epsilon / args.warmup])
before = time.time()
train_loss, train_acc = train(train_loader, model, criterion, optimizer, epoch,
args.noise_sd, attacker, device, writer)
test_loss, test_acc = test(test_loader, model, criterion, epoch, args.noise_sd, device, writer, args.print_freq)
after = time.time()
log(logfilename, "{}\t{:.3}\t{:.3}\t{:.3}\t{:.3}\t{:.3}\t{:.3}".format(
epoch, after - before,
scheduler.get_lr()[0], train_loss, train_acc, test_loss, test_acc))
# In PyTorch 1.1.0 and later, you should call `optimizer.step()` before `lr_scheduler.step()`.
# See more details at https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate
scheduler.step(epoch)
torch.save({
'epoch': epoch + 1,
'arch': args.arch,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict(),
}, model_path)
def _chunk_minibatch(batch, num_batches):
X, y = batch
batch_size = len(X) // num_batches
for i in range(num_batches):
yield X[i*batch_size : (i+1)*batch_size], y[i*batch_size : (i+1)*batch_size]
def train(loader: DataLoader, model: torch.nn.Module, criterion, optimizer: Optimizer, epoch: int, noise_sd: float,
attacker: Attacker, device: torch.device, writer=None):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
confidences = AverageMeter()
losses_reg = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
end = time.time()
# switch to train mode
model.train()
requires_grad_(model, True)
for i, batch in enumerate(loader):
# measure data loading time
data_time.update(time.time() - end)
mini_batches = _chunk_minibatch(batch, args.num_noise_vec)
for inputs, targets in mini_batches:
inputs, targets = inputs.to(device), targets.to(device)
batch_size = inputs.size(0)
noises = [torch.randn_like(inputs, device=device) * noise_sd
for _ in range(args.num_noise_vec)]
if args.adv_training:
requires_grad_(model, False)
model.eval()
inputs = attacker.attack(model, inputs, targets, noises=noises)
model.train()
requires_grad_(model, True)
# augment inputs with noise
inputs_c = torch.cat([inputs + noise for noise in noises], dim=0)
targets_c = targets.repeat(args.num_noise_vec)
logits = model(inputs_c)
loss_xent = criterion(logits, targets_c)
logits_chunk = torch.chunk(logits, args.num_noise_vec, dim=0)
loss_con = consistency_loss(logits_chunk, args.lbd, args.eta)
loss = loss_xent + loss_con
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
softmax = [F.softmax(logit, dim=1) for logit in logits_chunk]
avg_sm = sum(softmax) / args.num_noise_vec
avg_conf = -F.nll_loss(avg_sm, targets)
acc1, acc5 = accuracy(logits, targets_c, topk=(1, 5))
losses.update(loss_xent.item(), batch_size)
losses_reg.update(loss_con.item(), batch_size)
confidences.update(avg_conf.item(), batch_size)
top1.update(acc1.item(), batch_size)
top5.update(acc5.item(), batch_size)
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
print('Epoch: [{0}][{1}/{2}]\t'
'Time {batch_time.avg:.3f}\t'
'Data {data_time.avg:.3f}\t'
'Loss {loss.avg:.4f}\t'
'Acc@1 {top1.avg:.3f}\t'
'Acc@5 {top5.avg:.3f}'.format(
epoch, i, len(loader), batch_time=batch_time,
data_time=data_time, loss=losses, top1=top1, top5=top5))
writer.add_scalar('loss/train', losses.avg, epoch)
writer.add_scalar('loss/consistency', losses_reg.avg, epoch)
writer.add_scalar('loss/confidence', confidences.avg, epoch)
writer.add_scalar('batch_time', batch_time.avg, epoch)
writer.add_scalar('accuracy/train@1', top1.avg, epoch)
writer.add_scalar('accuracy/train@5', top5.avg, epoch)
return (losses.avg, top1.avg)
class SmoothAdv_PGD(Attacker):
"""
SmoothAdv PGD L2 attack
Parameters
----------
steps : int
Number of steps for the optimization.
max_norm : float or None, optional
If specified, the norms of the perturbations will not be greater than this value which might lower success rate.
device : torch.device, optional
Device on which to perform the attack.
"""
def __init__(self,
steps: int,
random_start: bool = True,
max_norm: Optional[float] = None,
device: torch.device = torch.device('cpu')) -> None:
super(SmoothAdv_PGD, self).__init__()
self.steps = steps
self.random_start = random_start
self.max_norm = max_norm
self.device = device
def attack(self, model, inputs, labels, noises=None):
"""
Performs SmoothAdv PGD L2 attack of the model for the inputs and labels.
Parameters
----------
model : nn.Module
Model to attack.
inputs : torch.Tensor
Batch of samples to attack. Values should be in the [0, 1] range.
labels : torch.Tensor
Labels of the samples to attack.
noises : List[torch.Tensor]
Lists of noise samples to attack.
Returns
-------
torch.Tensor
Batch of samples modified to be adversarial to the model.
"""
if inputs.min() < 0 or inputs.max() > 1: raise ValueError('Input values should be in the [0, 1] range.')
def _batch_l2norm(x):
x_flat = x.reshape(x.size(0), -1)
return torch.norm(x_flat, dim=1)
adv = inputs.detach()
alpha = self.max_norm / self.steps * 2
for i in range(self.steps):
adv.requires_grad_()
logits = [model(adv + noise) for noise in noises]
softmax = [F.softmax(logit, dim=1) for logit in logits]
avg_softmax = sum(softmax) / len(noises)
logsoftmax = torch.log(avg_softmax.clamp(min=1e-20))
loss = F.nll_loss(logsoftmax, labels)
grad = torch.autograd.grad(loss, [adv])[0]
grad_norm = _batch_l2norm(grad).view(-1, 1, 1, 1)
grad = grad / (grad_norm + 1e-8)
adv = adv + alpha * grad
eta_x_adv = adv - inputs
eta_x_adv = eta_x_adv.renorm(p=2, dim=0, maxnorm=self.max_norm)
adv = inputs + eta_x_adv
adv = torch.clamp(adv, 0, 1)
adv = adv.detach()
return adv
if __name__ == "__main__":
main()