-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathapp.py
195 lines (177 loc) · 7.04 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
#from dotenv import load_dotenv, find_dotenv
#_ = load_dotenv(find_dotenv())
import solara
from typing import Any, Callable, Optional, TypeVar, Union, cast, overload, List
from typing_extensions import TypedDict
import time
import ipyvue
import reacton
from solara.alias import rv as v
import os
import openai
from openai import OpenAI
import instructor
from pydantic import BaseModel, Field
from graphviz import Digraph
from langsmith import traceable
from langsmith.wrappers import wrap_openai
# NEEDED FOR INPUT TEXT AREA INSTEAD OF INPUT TEXT
def use_change(el: reacton.core.Element, on_value: Callable[[Any], Any], enabled=True):
"""Trigger a callback when a blur events occurs or the enter key is pressed."""
on_value_ref = solara.use_ref(on_value)
on_value_ref.current = on_value
def add_events():
def on_change(widget, event, data):
if enabled:
on_value_ref.current(widget.v_model)
widget = cast(ipyvue.VueWidget, solara.get_widget(el))
if enabled:
widget.on_event("blur", on_change)
widget.on_event("keyup.enter", on_change)
def cleanup():
if enabled:
widget.on_event("blur", on_change, remove=True)
widget.on_event("keyup.enter", on_change, remove=True)
return cleanup
solara.use_effect(add_events, [enabled])
@solara.component
def InputTextarea(
label: str,
value: Union[str, solara.Reactive[str]] = "",
on_value: Callable[[str], None] = None,
disabled: bool = False,
password: bool = False,
continuous_update: bool = False,
error: Union[bool, str] = False,
message: Optional[str] = None,
):
reactive_value = solara.use_reactive(value, on_value)
del value, on_value
def set_value_cast(value):
reactive_value.value = str(value)
def on_v_model(value):
if continuous_update:
set_value_cast(value)
messages = []
if error and isinstance(error, str):
messages.append(error)
elif message:
messages.append(message)
text_area = v.Textarea(
v_model=reactive_value.value,
on_v_model=on_v_model,
label=label,
disabled=disabled,
type="password" if password else None,
error=bool(error),
messages=messages,
solo=True,
hide_details=True,
outlined=True,
rows=1,
auto_grow=True,
)
use_change(text_area, set_value_cast, enabled=not continuous_update)
return text_area
# EXTRACTION
openai.api_key = os.environ['OPENAI_API_KEY']
# Wrap the OpenAI client with LangSmith
client = wrap_openai(OpenAI())
# Patch the client with instructor
client = instructor.from_openai(client, mode=instructor.Mode.TOOLS)
class Node(BaseModel):
id: int
label: str
color: str
class Edge(BaseModel):
source: int
target: int
label: str
color: str = "black"
class KnowledgeGraph(BaseModel):
nodes: List[Node] = Field(description="Nodes in the knowledge graph")
edges: List[Edge] = Field(description="Edges in the knowledge graph")
class MessageDict(TypedDict):
role: str
content: str
def add_chunk_to_ai_message(chunk: str):
messages.value = [
*messages.value[:-1],
{
"role": "assistant",
"content": chunk,
},
]
import ast
# DISPLAYED OUTPUT
@solara.component
def ChatInterface():
with solara.lab.ChatBox():
if len(messages.value)>0:
if messages.value[-1]["role"] != "user":
obj = messages.value[-1]["content"]
if f"{obj}" != "":
obj = ast.literal_eval(f"{obj}")
dot = Digraph(comment="Knowledge Graph")
if obj['nodes'] not in [None, []]:
if obj['nodes'][0]['label'] not in [None, '']:
for i, node in enumerate(obj['nodes']):
if obj['nodes'][i]['label'] not in [None, '']:
dot.node(
name=str(obj['nodes'][i]['id']),
label=obj['nodes'][i]['label'],
color=obj['nodes'][i]['color']
)
if obj['edges'] not in [None, []]:
if obj['edges'][0]['label'] not in [None, '']:
for i, edge in enumerate(obj['edges']):
if obj['edges'][i]['source'] not in [None,''] and obj['edges'][i]['target'] not in [None,''] and obj['edges'][i]['label'] not in [None,'']:
dot.edge(
tail_name=str(obj['edges'][i]['source']),
head_name=str(obj['edges'][i]['target']),
label=obj['edges'][i]['label'],
color=obj['edges'][i]['color']
)
with solara.Card():
solara.display(dot)
messages: solara.Reactive[List[MessageDict]] = solara.reactive([])
aux = solara.reactive("")
text_block = solara.reactive("Alice loves Bob while Charles hates both Alice and Bob.")
@solara.component
def Page():
title = "Knowledge Graph Generator"
with solara.Head():
solara.Title(f"{title}")
with solara.Column(style={"width": "100%", "padding": "50px"}):
solara.Markdown(f"#{title}")
solara.Markdown("Enter some text and the language model will try to describe it as a knowledge graph. Done with :heart: by [alonsosilva](https://twitter.com/alonsosilva)")
user_message_count = len([m for m in messages.value if m["role"] == "user"])
def send():
messages.value = [*messages.value, {"role": "user", "content": " "}]
def response(message):
extraction_stream = client.chat.completions.create_partial(
model="gpt-3.5-turbo",
response_model=KnowledgeGraph,
messages=[
{
"role": "user",
"content": f"Help me understand the following by describing it as small knowledge graph: {text_block.value}. It is important to add variety of colors in the nodes.",
},
],
temperature=0,
stream=True,
)
for extraction in extraction_stream:
obj = extraction.model_dump()
if f"{obj}" != aux.value:
add_chunk_to_ai_message(f"{obj}")
aux.value = f"{obj}"
def result():
if messages.value != []:
if messages.value[-1]["role"] == "user":
response(messages.value[-1]["content"])
result = solara.lab.use_task(result, dependencies=[user_message_count])
InputTextarea("Enter text:", value=text_block, continuous_update=False)
solara.Button(label="Generate Knowledge Graph", on_click=send)
ChatInterface()
Page()