forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathencoding.cc
669 lines (600 loc) · 22.5 KB
/
encoding.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
// Copyright 2010-2021 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "ortools/sat/encoding.h"
#include <algorithm>
#include <cstdint>
#include <deque>
#include <functional>
#include <queue>
#include <string>
#include <vector>
#include "ortools/base/logging.h"
#include "ortools/sat/boolean_problem.pb.h"
#include "ortools/sat/pb_constraint.h"
#include "ortools/sat/sat_base.h"
#include "ortools/sat/sat_parameters.pb.h"
#include "ortools/sat/sat_solver.h"
#include "ortools/util/strong_integers.h"
namespace operations_research {
namespace sat {
EncodingNode::EncodingNode(Literal l)
: for_sorting_(l.Variable()), literals_(1, l) {}
EncodingNode::EncodingNode(int lb, int ub,
std::function<Literal(int x)> create_lit)
: lb_(lb), ub_(ub), create_lit_(create_lit) {
CHECK_LT(lb, ub);
literals_.push_back(create_lit(lb));
// TODO(user): Not ideal, we should probably just provide index in the
// original objective for sorting purpose.
for_sorting_ = literals_[0].Variable();
}
void EncodingNode::InitializeFullNode(int n, EncodingNode* a, EncodingNode* b,
SatSolver* solver) {
CHECK(literals_.empty()) << "Already initialized";
CHECK_GT(n, 0);
const BooleanVariable first_var_index(solver->NumVariables());
solver->SetNumVariables(solver->NumVariables() + n);
for (int i = 0; i < n; ++i) {
literals_.push_back(Literal(first_var_index + i, true));
if (i > 0) {
solver->AddBinaryClause(literal(i - 1), literal(i).Negated());
}
}
lb_ = a->lb_ + b->lb_;
ub_ = lb_ + n;
depth_ = 1 + std::max(a->depth_, b->depth_);
child_a_ = a;
child_b_ = b;
for_sorting_ = first_var_index;
}
void EncodingNode::InitializeLazyNode(EncodingNode* a, EncodingNode* b,
SatSolver* solver) {
CHECK(literals_.empty()) << "Already initialized";
const BooleanVariable first_var_index(solver->NumVariables());
solver->SetNumVariables(solver->NumVariables() + 1);
literals_.emplace_back(first_var_index, true);
child_a_ = a;
child_b_ = b;
ub_ = a->ub_ + b->ub_;
lb_ = a->lb_ + b->lb_;
depth_ = 1 + std::max(a->depth_, b->depth_);
// Merging the node of the same depth in order seems to help a bit.
for_sorting_ = std::min(a->for_sorting_, b->for_sorting_);
}
void EncodingNode::InitializeLazyCoreNode(Coefficient weight, EncodingNode* a,
EncodingNode* b) {
CHECK(literals_.empty()) << "Already initialized";
child_a_ = a;
child_b_ = b;
ub_ = a->ub_ + b->ub_;
weight_ = weight;
weight_lb_ = a->lb_ + b->lb_;
lb_ = weight_lb_ + 1;
depth_ = 1 + std::max(a->depth_, b->depth_);
// Merging the node of the same depth in order seems to help a bit.
for_sorting_ = std::min(a->for_sorting_, b->for_sorting_);
}
bool EncodingNode::IncreaseCurrentUB(SatSolver* solver) {
if (current_ub() == ub_) return false;
if (create_lit_ != nullptr) {
literals_.emplace_back(create_lit_(current_ub()));
} else {
CHECK_NE(solver, nullptr);
literals_.emplace_back(BooleanVariable(solver->NumVariables()), true);
solver->SetNumVariables(solver->NumVariables() + 1);
}
if (literals_.size() > 1) {
solver->AddBinaryClause(literals_.back().Negated(),
literals_[literals_.size() - 2]);
}
return true;
}
Coefficient EncodingNode::Reduce(const SatSolver& solver) {
int i = 0;
while (i < literals_.size() &&
solver.Assignment().LiteralIsTrue(literals_[i])) {
++i;
++lb_;
}
literals_.erase(literals_.begin(), literals_.begin() + i);
while (!literals_.empty() &&
solver.Assignment().LiteralIsFalse(literals_.back())) {
literals_.pop_back();
ub_ = lb_ + literals_.size();
}
if (weight_lb_ >= lb_) return Coefficient(0);
const Coefficient result = Coefficient(lb_ - weight_lb_) * weight_;
weight_lb_ = lb_;
return result;
}
void EncodingNode::ApplyWeightUpperBound(Coefficient gap, SatSolver* solver) {
CHECK_GT(weight_, 0);
const Coefficient num_allowed = (gap / weight_);
const Coefficient new_size =
std::max(Coefficient(0), Coefficient(weight_lb_ - lb_) + num_allowed);
if (size() <= new_size) return;
for (int i = new_size.value(); i < size(); ++i) {
solver->AddUnitClause(literal(i).Negated());
}
literals_.resize(new_size.value());
ub_ = lb_ + literals_.size();
}
bool EncodingNode::AssumptionIs(Literal other) const {
DCHECK(!HasNoWeight());
const int index = weight_lb_ - lb_;
return index < literals_.size() && literals_[index].Negated() == other;
}
Literal EncodingNode::GetAssumption(SatSolver* solver) {
CHECK(!HasNoWeight());
const int index = weight_lb_ - lb_;
CHECK_GE(index, 0) << "Not reduced?";
while (index >= literals_.size()) {
IncreaseNodeSize(this, solver);
}
return literals_[index].Negated();
}
void EncodingNode::IncreaseWeightLb() {
CHECK_LT(weight_lb_ - lb_, literals_.size());
weight_lb_++;
}
bool EncodingNode::HasNoWeight() const {
return weight_ == 0 || weight_lb_ >= ub_;
}
std::string EncodingNode::DebugString(
const VariablesAssignment& assignment) const {
std::string result;
absl::StrAppend(&result, "depth:", depth_);
absl::StrAppend(&result, " [", lb_, ",", lb_ + literals_.size(), "]");
absl::StrAppend(&result, " ub:", ub_);
absl::StrAppend(&result, " weight:", weight_.value());
absl::StrAppend(&result, " weight_lb:", weight_lb_);
absl::StrAppend(&result, " values:");
const size_t limit = 20;
int value = 0;
for (int i = 0; i < std::min(literals_.size(), limit); ++i) {
char c = '?';
if (assignment.LiteralIsTrue(literals_[i])) {
c = '1';
value = i + 1;
} else if (assignment.LiteralIsFalse(literals_[i])) {
c = '0';
}
result += c;
}
absl::StrAppend(&result, " val:", lb_ + value);
return result;
}
EncodingNode LazyMerge(EncodingNode* a, EncodingNode* b, SatSolver* solver) {
EncodingNode n;
n.InitializeLazyNode(a, b, solver);
solver->AddBinaryClause(a->literal(0).Negated(), n.literal(0));
solver->AddBinaryClause(b->literal(0).Negated(), n.literal(0));
solver->AddTernaryClause(n.literal(0).Negated(), a->literal(0),
b->literal(0));
return n;
}
void IncreaseNodeSize(EncodingNode* node, SatSolver* solver) {
if (!node->IncreaseCurrentUB(solver)) return;
std::vector<EncodingNode*> to_process;
to_process.push_back(node);
// Only one side of the constraint is mandatory (the one propagating the ones
// to the top of the encoding tree), and it seems more efficient not to encode
// the other side.
//
// TODO(user): Experiment more.
const bool complete_encoding = false;
while (!to_process.empty()) {
EncodingNode* n = to_process.back();
EncodingNode* a = n->child_a();
EncodingNode* b = n->child_b();
to_process.pop_back();
// Integer leaf node.
if (a == nullptr) continue;
CHECK_NE(solver, nullptr);
// Note that since we were able to increase its size, n must have children.
// n->GreaterThan(target) is the new literal of n.
CHECK(a != nullptr);
CHECK(b != nullptr);
const int target = n->current_ub() - 1;
// Add a literal to a if needed.
// That is, now that the node n can go up to it new current_ub, if we need
// to increase the current_ub of a.
if (a->current_ub() != a->ub()) {
CHECK_GE(a->current_ub() - 1 + b->lb(), target - 1);
if (a->current_ub() - 1 + b->lb() < target) {
CHECK(a->IncreaseCurrentUB(solver));
to_process.push_back(a);
}
}
// Add a literal to b if needed.
if (b->current_ub() != b->ub()) {
CHECK_GE(b->current_ub() - 1 + a->lb(), target - 1);
if (b->current_ub() - 1 + a->lb() < target) {
CHECK(b->IncreaseCurrentUB(solver));
to_process.push_back(b);
}
}
// Wire the new literal of n correctly with its two children.
for (int ia = a->lb(); ia < a->current_ub(); ++ia) {
const int ib = target - ia;
if (complete_encoding && ib >= b->lb() && ib < b->current_ub()) {
// if x <= ia and y <= ib then x + y <= ia + ib.
solver->AddTernaryClause(n->GreaterThan(target).Negated(),
a->GreaterThan(ia), b->GreaterThan(ib));
}
if (complete_encoding && ib == b->ub()) {
solver->AddBinaryClause(n->GreaterThan(target).Negated(),
a->GreaterThan(ia));
}
if (ib - 1 == b->lb() - 1) {
solver->AddBinaryClause(n->GreaterThan(target),
a->GreaterThan(ia).Negated());
}
if ((ib - 1) >= b->lb() && (ib - 1) < b->current_ub()) {
// if x > ia and y > ib - 1 then x + y > ia + ib.
solver->AddTernaryClause(n->GreaterThan(target),
a->GreaterThan(ia).Negated(),
b->GreaterThan(ib - 1).Negated());
}
}
// Case ia = a->lb() - 1; a->GreaterThan(ia) always true.
{
const int ib = target - (a->lb() - 1);
if ((ib - 1) == b->lb() - 1) {
solver->AddUnitClause(n->GreaterThan(target));
}
if ((ib - 1) >= b->lb() && (ib - 1) < b->current_ub()) {
solver->AddBinaryClause(n->GreaterThan(target),
b->GreaterThan(ib - 1).Negated());
}
}
// case ia == a->ub; a->GreaterThan(ia) always false.
{
const int ib = target - a->ub();
if (complete_encoding && ib >= b->lb() && ib < b->current_ub()) {
solver->AddBinaryClause(n->GreaterThan(target).Negated(),
b->GreaterThan(ib));
}
if (ib == b->ub()) {
solver->AddUnitClause(n->GreaterThan(target).Negated());
}
}
}
}
EncodingNode FullMerge(Coefficient upper_bound, EncodingNode* a,
EncodingNode* b, SatSolver* solver) {
EncodingNode n;
const int size =
std::min(Coefficient(a->size() + b->size()), upper_bound).value();
n.InitializeFullNode(size, a, b, solver);
for (int ia = 0; ia < a->size(); ++ia) {
if (ia + b->size() < size) {
solver->AddBinaryClause(n.literal(ia + b->size()).Negated(),
a->literal(ia));
}
if (ia < size) {
solver->AddBinaryClause(n.literal(ia), a->literal(ia).Negated());
} else {
// Fix the variable to false because of the given upper_bound.
solver->AddUnitClause(a->literal(ia).Negated());
}
}
for (int ib = 0; ib < b->size(); ++ib) {
if (ib + a->size() < size) {
solver->AddBinaryClause(n.literal(ib + a->size()).Negated(),
b->literal(ib));
}
if (ib < size) {
solver->AddBinaryClause(n.literal(ib), b->literal(ib).Negated());
} else {
// Fix the variable to false because of the given upper_bound.
solver->AddUnitClause(b->literal(ib).Negated());
}
}
for (int ia = 0; ia < a->size(); ++ia) {
for (int ib = 0; ib < b->size(); ++ib) {
if (ia + ib < size) {
// if x <= ia and y <= ib, then x + y <= ia + ib.
solver->AddTernaryClause(n.literal(ia + ib).Negated(), a->literal(ia),
b->literal(ib));
}
if (ia + ib + 1 < size) {
// if x > ia and y > ib, then x + y > ia + ib + 1.
solver->AddTernaryClause(n.literal(ia + ib + 1),
a->literal(ia).Negated(),
b->literal(ib).Negated());
} else {
solver->AddBinaryClause(a->literal(ia).Negated(),
b->literal(ib).Negated());
}
}
}
return n;
}
EncodingNode* MergeAllNodesWithDeque(Coefficient upper_bound,
const std::vector<EncodingNode*>& nodes,
SatSolver* solver,
std::deque<EncodingNode>* repository) {
std::deque<EncodingNode*> dq(nodes.begin(), nodes.end());
while (dq.size() > 1) {
EncodingNode* a = dq.front();
dq.pop_front();
EncodingNode* b = dq.front();
dq.pop_front();
repository->push_back(FullMerge(upper_bound, a, b, solver));
dq.push_back(&repository->back());
}
return dq.front();
}
namespace {
struct SortEncodingNodePointers {
bool operator()(EncodingNode* a, EncodingNode* b) const { return *a < *b; }
};
} // namespace
EncodingNode* LazyMergeAllNodeWithPQAndIncreaseLb(
Coefficient weight, const std::vector<EncodingNode*>& nodes,
SatSolver* solver, std::deque<EncodingNode>* repository) {
std::priority_queue<EncodingNode*, std::vector<EncodingNode*>,
SortEncodingNodePointers>
pq(nodes.begin(), nodes.end());
while (pq.size() > 2) {
EncodingNode* a = pq.top();
pq.pop();
EncodingNode* b = pq.top();
pq.pop();
repository->push_back(LazyMerge(a, b, solver));
pq.push(&repository->back());
}
CHECK_EQ(pq.size(), 2);
EncodingNode* a = pq.top();
pq.pop();
EncodingNode* b = pq.top();
pq.pop();
repository->push_back(EncodingNode());
EncodingNode* n = &repository->back();
n->InitializeLazyCoreNode(weight, a, b);
solver->AddBinaryClause(a->literal(0), b->literal(0));
return n;
}
std::vector<EncodingNode*> CreateInitialEncodingNodes(
const std::vector<Literal>& literals,
const std::vector<Coefficient>& coeffs, Coefficient* offset,
std::deque<EncodingNode>* repository) {
CHECK_EQ(literals.size(), coeffs.size());
*offset = 0;
std::vector<EncodingNode*> nodes;
for (int i = 0; i < literals.size(); ++i) {
// We want to maximize the cost when this literal is true.
if (coeffs[i] > 0) {
repository->emplace_back(literals[i]);
nodes.push_back(&repository->back());
nodes.back()->set_weight(coeffs[i]);
} else {
repository->emplace_back(literals[i].Negated());
nodes.push_back(&repository->back());
nodes.back()->set_weight(-coeffs[i]);
// Note that this increase the offset since the coeff is negative.
*offset -= coeffs[i];
}
}
return nodes;
}
std::vector<EncodingNode*> CreateInitialEncodingNodes(
const LinearObjective& objective_proto, Coefficient* offset,
std::deque<EncodingNode>* repository) {
*offset = 0;
std::vector<EncodingNode*> nodes;
for (int i = 0; i < objective_proto.literals_size(); ++i) {
const Literal literal(objective_proto.literals(i));
// We want to maximize the cost when this literal is true.
if (objective_proto.coefficients(i) > 0) {
repository->emplace_back(literal);
nodes.push_back(&repository->back());
nodes.back()->set_weight(Coefficient(objective_proto.coefficients(i)));
} else {
repository->emplace_back(literal.Negated());
nodes.push_back(&repository->back());
nodes.back()->set_weight(Coefficient(-objective_proto.coefficients(i)));
// Note that this increase the offset since the coeff is negative.
*offset -= objective_proto.coefficients(i);
}
}
return nodes;
}
namespace {
bool EncodingNodeByWeight(const EncodingNode* a, const EncodingNode* b) {
return a->weight() < b->weight();
}
bool EncodingNodeByDepth(const EncodingNode* a, const EncodingNode* b) {
return a->depth() < b->depth();
}
} // namespace
std::vector<Literal> ReduceNodesAndExtractAssumptions(
Coefficient upper_bound, Coefficient stratified_lower_bound,
Coefficient* lower_bound, std::vector<EncodingNode*>* nodes,
SatSolver* solver) {
// Remove the left-most variables fixed to one from each node.
// Also update the lower_bound. Note that Reduce() needs the solver to be
// at the root node in order to work.
solver->Backtrack(0);
for (EncodingNode* n : *nodes) {
*lower_bound += n->Reduce(*solver);
}
// Fix the nodes right-most variables that are above the gap.
// If we closed the problem, we abort and return and empty vector.
if (upper_bound != kCoefficientMax) {
const Coefficient gap = upper_bound - *lower_bound;
if (gap < 0) return {};
for (EncodingNode* n : *nodes) {
n->ApplyWeightUpperBound(gap, solver);
}
}
// Remove the empty nodes.
nodes->erase(std::remove_if(nodes->begin(), nodes->end(),
[](EncodingNode* a) { return a->HasNoWeight(); }),
nodes->end());
// Sort the nodes.
switch (solver->parameters().max_sat_assumption_order()) {
case SatParameters::DEFAULT_ASSUMPTION_ORDER:
break;
case SatParameters::ORDER_ASSUMPTION_BY_DEPTH:
std::sort(nodes->begin(), nodes->end(), EncodingNodeByDepth);
break;
case SatParameters::ORDER_ASSUMPTION_BY_WEIGHT:
std::sort(nodes->begin(), nodes->end(), EncodingNodeByWeight);
break;
}
if (solver->parameters().max_sat_reverse_assumption_order()) {
// TODO(user): with DEFAULT_ASSUMPTION_ORDER, this will lead to a somewhat
// weird behavior, since we will reverse the nodes at each iteration...
std::reverse(nodes->begin(), nodes->end());
}
// Extract the assumptions from the nodes.
std::vector<Literal> assumptions;
for (EncodingNode* n : *nodes) {
if (n->weight() >= stratified_lower_bound) {
assumptions.push_back(n->GetAssumption(solver));
}
}
return assumptions;
}
Coefficient ComputeCoreMinWeight(const std::vector<EncodingNode*>& nodes,
const std::vector<Literal>& core) {
Coefficient min_weight = kCoefficientMax;
int index = 0;
for (int i = 0; i < core.size(); ++i) {
for (; index < nodes.size() && !nodes[index]->AssumptionIs(core[i]);
++index) {
}
CHECK_LT(index, nodes.size());
min_weight = std::min(min_weight, nodes[index]->weight());
}
return min_weight;
}
Coefficient MaxNodeWeightSmallerThan(const std::vector<EncodingNode*>& nodes,
Coefficient upper_bound) {
Coefficient result(0);
for (EncodingNode* n : nodes) {
CHECK_GT(n->weight(), 0);
if (n->weight() < upper_bound) {
result = std::max(result, n->weight());
}
}
return result;
}
bool ProcessCore(const std::vector<Literal>& core, Coefficient min_weight,
std::deque<EncodingNode>* repository,
std::vector<EncodingNode*>* nodes, SatSolver* solver) {
// Backtrack to be able to add new constraints.
solver->ResetToLevelZero();
if (core.size() == 1) {
return solver->AddUnitClause(core[0].Negated());
}
// Remove from nodes the EncodingNode in the core, merge them, and add the
// resulting EncodingNode at the back.
int index = 0;
int new_node_index = 0;
std::vector<EncodingNode*> to_merge;
for (int i = 0; i < core.size(); ++i) {
// Since the nodes appear in order in the core, we can find the
// relevant "objective" variable efficiently with a simple linear scan
// in the nodes vector (done with index).
for (; !(*nodes)[index]->AssumptionIs(core[i]); ++index) {
CHECK_LT(index, nodes->size());
(*nodes)[new_node_index] = (*nodes)[index];
++new_node_index;
}
CHECK_LT(index, nodes->size());
to_merge.push_back((*nodes)[index]);
// Special case if the weight > min_weight. we keep it, but reduce its
// cost. This is the same "trick" as in WPM1 used to deal with weight.
// We basically split a clause with a larger weight in two identical
// clauses, one with weight min_weight that will be merged and one with
// the remaining weight.
if ((*nodes)[index]->weight() > min_weight) {
(*nodes)[index]->set_weight((*nodes)[index]->weight() - min_weight);
(*nodes)[new_node_index] = (*nodes)[index];
++new_node_index;
}
++index;
}
for (; index < nodes->size(); ++index) {
(*nodes)[new_node_index] = (*nodes)[index];
++new_node_index;
}
nodes->resize(new_node_index);
nodes->push_back(LazyMergeAllNodeWithPQAndIncreaseLb(min_weight, to_merge,
solver, repository));
return !solver->IsModelUnsat();
}
bool ProcessCoreWithAlternativeEncoding(const std::vector<Literal>& core,
Coefficient min_weight,
std::deque<EncodingNode>* repository,
std::vector<EncodingNode*>* nodes,
SatSolver* solver) {
// Backtrack to be able to add new constraints.
solver->ResetToLevelZero();
if (core.size() == 1) {
return solver->AddUnitClause(core[0].Negated());
}
std::vector<EncodingNode*> new_nodes;
std::vector<EncodingNode*> to_merge;
// Preconditions.
for (EncodingNode* n : *nodes) {
CHECK_GT(n->size(), 0);
}
// Remove from nodes the EncodingNode in the core, merge them, and add the
// resulting EncodingNode at the back.
int index = 0;
for (int i = 0; i < core.size(); ++i) {
// Since the nodes appear in order in the core, we can find the
// relevant "objective" variable efficiently with a simple linear scan
// in the nodes vector (done with index).
CHECK_LT(index, nodes->size());
for (; !(*nodes)[index]->AssumptionIs(core[i]); ++index) {
CHECK_LT(index, nodes->size());
new_nodes.push_back((*nodes)[index]);
}
CHECK_LT(index, nodes->size());
// We have a node from the core.
// We will distinguish its first literal.
EncodingNode* n = (*nodes)[index];
const Literal lit = core[i].Negated();
n->IncreaseWeightLb();
++index;
CHECK_GT(n->size(), 0);
// TODO(user): For node with same depth, the sorting order is not the same
// if we create a new node or reuse one. Experiment what is the best order.
repository->emplace_back(lit);
EncodingNode* new_bool_node = &repository->back();
new_bool_node->set_depth(n->depth());
CHECK_GT(new_bool_node->size(), 0);
to_merge.push_back(new_bool_node);
if (n->weight() > min_weight) {
new_bool_node->set_weight(n->weight() - min_weight);
new_nodes.push_back(new_bool_node);
}
if (!n->HasNoWeight()) {
new_nodes.push_back(n);
}
}
for (; index < nodes->size(); ++index) {
new_nodes.push_back((*nodes)[index]);
}
new_nodes.push_back(LazyMergeAllNodeWithPQAndIncreaseLb(min_weight, to_merge,
solver, repository));
*nodes = new_nodes;
return !solver->IsModelUnsat();
}
} // namespace sat
} // namespace operations_research